BATS: Achieving the Capacity of Networks with Packet Loss

Raymond W. Yeung

Institute of Network Coding The Chinese University of Hong Kong

Joint work with Shenghao Yang (IIIS, Tsinghua U)

Problem

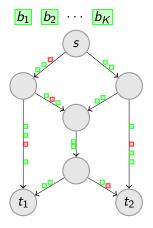
BATS Codes

- Encoding and Decoding
- Degree Distribution
- Achievable Rates

3 Recent Developments

Transmission through Packet Networks (Erasure Networks)

One 20MB file \approx 20,000 packets

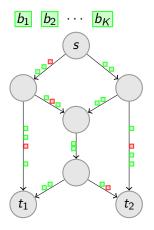


Transmission through Packet Networks (Erasure Networks)

One 20MB file \approx 20,000 packets

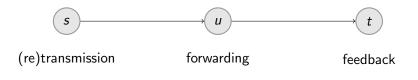
A practical solution

- low computational and storage costs
- high transmission rate
- small protocol overhead



Retransmission

- Example: TCP
- Not scalable for multicast
- Cost of feedback

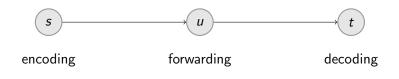


Retransmission

- Example: TCP
- Not scalable for multicast
- Cost of feedback

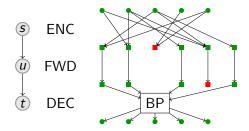
Forward error correction

- Example: fountain codes
- Scalable for multicast
- Neglectable feedback cost

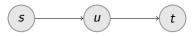


Complexity of Fountain Codes with Routing

- K packets, T symbols in a packet.
- Encoding: $\mathcal{O}(T)$ per packet.
- Decoding: $\mathcal{O}(T)$ per packet.
- Routing: $\mathcal{O}(1)$ per packet and fixed buffer size.

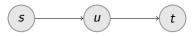


[Luby02] M. Luby, "LT codes," in Proc. 43rd Ann. IEEE Symp. on Foundations of Computer Science, Nov. 2002. [Shokr06] A. Shokrollahi, "Raptor codes," IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2551-2567, Jun 2006.



Both links have a packet loss rate 0.2. The capacity of this network is 0.8.

Intermediate	End-to-End	Maximum Rate
forwarding	retransmission	0.64
forwarding	fountain codes	0.64



Both links have a packet loss rate 0.2. The capacity of this network is 0.8.

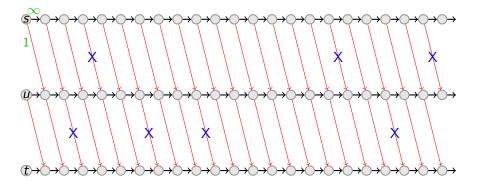
Intermediate	End-to-End	Maximum Rate	
forwarding	retransmission	0.64	
forwarding	fountain codes	0.64	
network coding	random linear codes	0.8	

Achievable Rates: *n* hops

All links have a packet loss rate 0.2.

Intermediate Operation	Maximum Rate	
forwarding	$0.8^n \rightarrow 0, \ n \rightarrow \infty$	
network coding	0.8	
	forwarding	forwarding $0.8^n \rightarrow 0, \ n \rightarrow \infty$

An Explanation



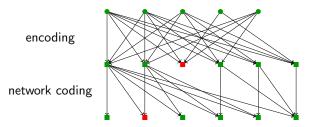
Theorem

Random linear network codes achieve the capacity of a large range of multicast erasure networks.

- [Wu06] Y. Wu, "A trellis connectivity analysis of random linear network coding with buffering," in Proc. IEEE ISIT 06, Seattle, USA, Jul. 2006.
- LMKE08] D. S. Lun, M. Médard, R. Koetter, and M. Effros, "On coding for reliable communication over packet networks," Physical Communication, vol. 1, no. 1, pp. 320, 2008.

Complexity of Linear Network Coding

- Encoding: $\mathcal{O}(TK)$ per packet.
- Decoding: $\mathcal{O}(K^2 + TK)$ per packet.
- Network coding: $\mathcal{O}(TK)$ per packet. Buffer K packets.



$\mathsf{Routing} + \mathsf{fountain}$

 \odot

low complexity

low rate

Network coding

 \bigcirc

high complexity

high rate

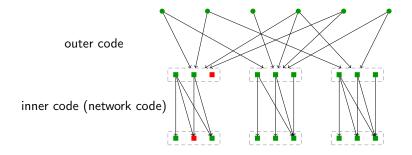
Problem

2 BATS Codes

- Encoding and Decoding
- Degree Distribution
- Achievable Rates

3 Recent Developments

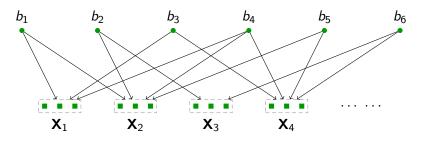
Batched Sparse (BATS) Codes



[YY11] S. Yang and R. W. Yeung. Coding for a network coded fountain. ISIT 2011, Saint Petersburg, Russia, 2011.

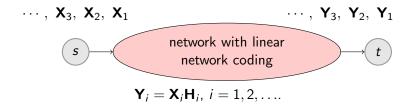
Encoding of BATS Code: Outer Code

- Apply a "matrix fountain code" at the source node:
 - **1** Obtain a degree d by sampling a degree distribution Ψ .
 - Pick d distinct input packets randomly.
 - **③** Generate a batch of *M* coded packets using the *d* packets.
- Transmit the batches sequentially.



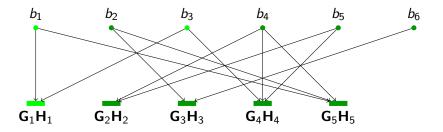
 $\mathbf{X}_i = \begin{bmatrix} b_{i1} & b_{i2} & \cdots & b_{id_i} \end{bmatrix} \mathbf{G}_i = \mathbf{B}_i \mathbf{G}_i.$

- The batches traverse the network.
- Encoding at the intermediate nodes forms the inner code.
- Linear network coding is applied in a causal manner within a batch.



Belief Propagation Decoding

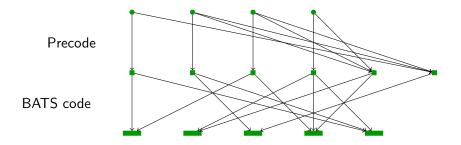
- Find a check node *i* with degree_{*i*} = rank(G_iH_i).
- 2 Decode the *i*th batch.
- Opdate the decoding graph. Repeat 1).



The linear equation associated with a check node: $\mathbf{Y}_i = \mathbf{B}_i \mathbf{G}_i \mathbf{H}_i$.

Precoding

- Precoding by a fixed-rate erasure correction code.
- The BATS code recovers (1η) of its input packets.



[Shokr06] A. Shokrollahi, Raptor codes, IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 25512567, Jun. 2006.

We need a degree distribution Ψ such that

- The BP decoding succeeds with high probability.
- Interpretation of the encoding/decoding complexity is low.
- 3 The coding rate is high.

A Sufficient Condition

Define

$$\Omega(x) = \sum_{r=1}^{M} h_{r,r}^* \sum_{d=r+1}^{D} d\Psi_d I_{d-r,r}(x) + \sum_{r=1}^{M} h_{r,r} r \Psi_r,$$

where $h_{r,r}^*$ is related to the rank distribution of H and $I_{a,b}(x)$ is the regularized incomplete beta function.

Theorem

Consider a sequence of decoding graph $BATS(K, n, \{\Psi_{d,r}\})$ with constant $\theta = K/n$. The BP decoder is asymptotically error free if the degree distribution satisfies

$$\Omega(x) + \theta \ln(1-x) > 0 \quad \text{for } x \in (0, 1-\eta),$$

$$\begin{array}{ll} \max & \theta \\ \text{s.t.} & \Omega(x) + \theta \ln(1-x) \geq 0, \quad 0 < x < 1 - \eta \\ & \Psi_d \geq 0, \quad d = 1, \cdots, D \\ & \sum_d \Psi_d = 1. \end{array}$$

• $D = \lceil M/\eta \rceil$

• Solver: Linear programming by sampling some *x*.

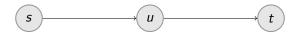
Source node encoding		$\mathcal{O}(TM)$ per packet	
Destination node decoding		$\mathcal{O}(M^2 + TM)$ per packet	
Intermediate Node	buffer	$\mathcal{O}(TM)$	
	network coding	$\mathcal{O}(TM)$ per packet	

- T: length of a packet
- K: number of packets
- M: batch size

Optimization

$$\begin{array}{ll} \max & \theta \\ \text{s.t.} & \Omega(x_k) + \theta \ln(1 - x_k) \geq 0, \quad x_k \in (0, 1 - \eta) \\ & \Psi_d \geq 0, \quad d = 1, \cdots, \lceil M/\eta \rceil \\ & \sum_d \Psi_d = 1. \end{array}$$

- The optimal values of θ is very close to E[rank(H)].
- It can be proved when E[rank(H)] = M Pr{rank(H) = M}.



- Packet loss rate 0.2.
- Node *s* encodes *K* packets using a BATS code.
- Node *u* caches only one batch.
- Node *t* sends one feedback after decoding.

Сс	Coding rates obtained by simulation for $M = 32$					
	K	<i>q</i> = 2	q = 4	q = 8	q = 16	
:	16000	0.5826	0.6145	0.6203	0.6248	
	32000	0.6087	0.6441	0.6524	0.6574	
	64000	0.6259	0.6655	0.6762	0.6818	

- M: batch size
- K: number of packets
- q: field size

- M = 1: BATS codes degenerate to Raptor codes.
 - Low complexity
 - No benefit of network coding
- M = K and degree $\equiv K$: BATS codes becomes RLNC.
 - High complexity
 - Full benefit of network coding.
- Exist parameters with moderate values that give very good performance

Problem

BATS Codes

- Encoding and Decoding
- Degree Distribution
- Achievable Rates

3 Recent Developments

• Degree distribution optimization

- Degree distribution depends on the rank distribution.
- Robust degree distribution for different rank distributions.
- Inactivation decoding alleviates the degree distribution optimization problem.
- Finite length analysis [3]
- Testing systems
 - Multi-hop wireless transmission: 802.11
 - Peer-to-peer file transmission

- BATS codes provide a digital fountain solution with linear network coding:
 - Outer code at the source node is a matrix fountain code
 - Linear network coding at the intermediate nodes forms the inner code
 - Prevents BOTH packet loss and delay from accumulating along the way
- The more hops between the source node and the sink node, the larger the benefit.
- Future work:
 - Proof of (nearly) capacity achieving
 - Design of intermediate operations to maximize the throughput and minimize the buffer size

S. Yang and R. W. Yeung, "Batched Sparse Codes," submitted to IEEE Trans. Inform. Theory, 2012.

S. Yang and R. W. Yeung, "Large File Transmission in Network-Coded Networks with Packet Loss – A Performance Perspective," in Proc. ISABEL 2011, Barcelona, Spain, 2011.

T. C Ng and S. Yang, "Finite length analysis of BATS codes," in Proc. NetCod'13, Calgary, Canada, June, 2013.