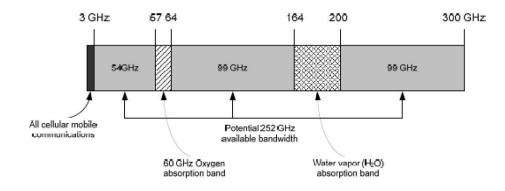
Energy Efficient Methods for Millimeter Wave Picocellular Systems

Sundeep Rangan, Ted Rappaport, Elza Erkip Zoran Latinovic, Mustafa Riza Akdeniz, Yuanpeng Liu NYU-Poly

> June 25, 2013 Communications Theory Workshop Phuket, Thailand


Millimeter Wave: Potentials and Challenges

- Capacity Estimation
 - 28 GHz Measurements in New York City
- Power Consumption Issues
- Subband Scheduling
- Conclusions and Future Work

mmW: The New Frontier for Cellular

- Potential 1000x increase over current cellular:
 - Massive increase in bandwidth
 - Near term opportunities in LMDS and E-Bands
 - Up to 200x total over long-time
 - Spatial degrees of freedom from large antenna arrays

From Khan, Pi "Millimeter Wave Mobile Broadband: Unleashing 3-300 GHz spectrum," 2011

Key Challenges: Range

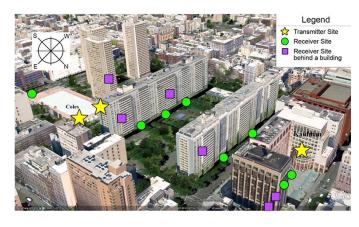
• Friis' Law:
$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda^2}{4\pi r^2}\right)$$

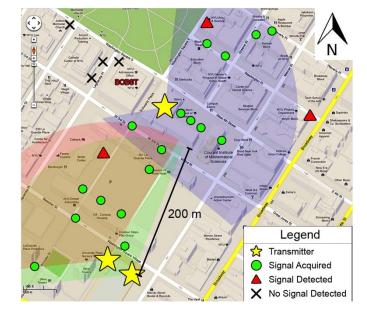
• Free-space path loss $\propto \lambda^{-2}$

• Increase in 20 dB moving from 3 to 30 GHz

- Shadowing: Significant transmission losses possible:
 - Mortar, brick, concrete > 150 dB
 - Human body: Up to 35 dB
- NLOS propagation relies on reflections

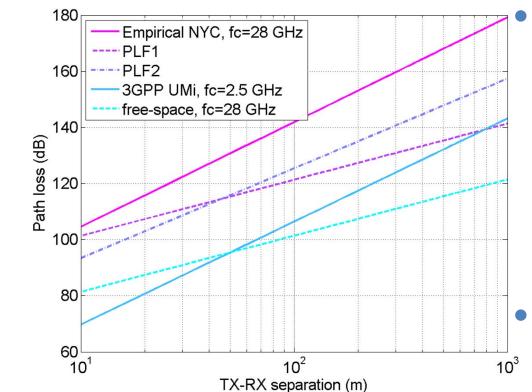
Challenges: Power Consumption


- High bandwidths
- Large numbers of antennas
- ADC bottleneck
 - Digital processing of all antennas not possible
- Low PA efficiency in CMOS (often < 10%)



- Millimeter Wave: Potentials and Challenges
 - Capacity Estimation
 - 28 GHz Measurements in New York City
- Power Consumption Issues
- Subband Scheduling
- Conclusions and Future Work

NYC 28 GHz Measurements

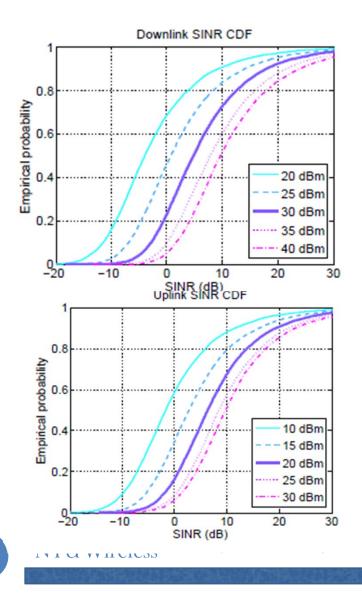

- Focus on urban canyon environment
 - Likely initial use case
 - Mostly NLOS
 - "Worst-case" setting
- Measurements mimic microcell type deployment:
 - Rooftops 2-5 stories to street-level
- Distances up to 200m

All images here from Rappaport's measurements:

Azar et al, "28 GHz Propagation Measurements for Outdoor Cellular Communications Using Steerable Bean Antennas in New York City," ICC 2013

Path Loss Comparison

- Measured NLOS path loss in NYC
 - > 40 dB over free-space
 - > 40 dB worse than 3GPP urban micro model for fc=2.5 GHz
 - > 20 dB over prev. studies
- But, will still see large
 capacity gain possible


8

Simulation Parameters

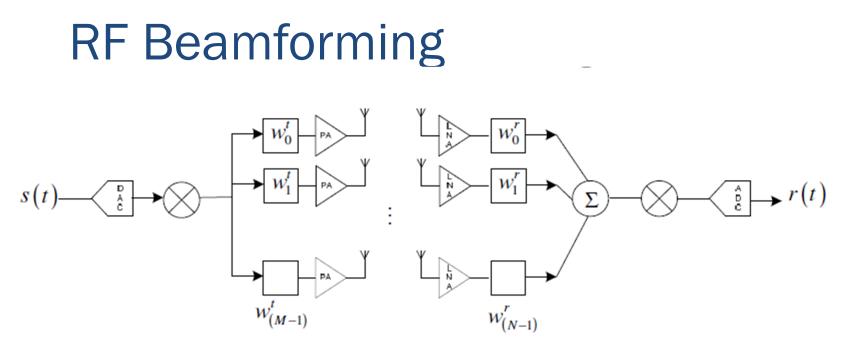
Parameter	Value	Remarks
BS layout	Hex, 3 cells per site, ISD = 200m	Similar to 3GPP Urban Micro (UMi) model (36.814)
UE layout	Uniform, 10 UEs / cell	
Bandwidth	1 GHz	
Duplex	TDD	To support beamforming
Carrier	28 GHz	
Noise figure	7 dB (UE), 5 dB (BS)	
TX power	20 dBm (UE), 30 dBm (BS)	Supportable with 8% PA efficiency
Scheduling	Proportional fair, full buffer traffic	Static simulation corresponds to equal bandwidth
Antenna	8x8 2D uniform array at UE and BS)	Long-term beamforming. Single stream, no SDMA

SNR Distribution

10

- SNR distribution similar to current macrocellular deployment
- But, depends on:
 - Power
 - Beamforming

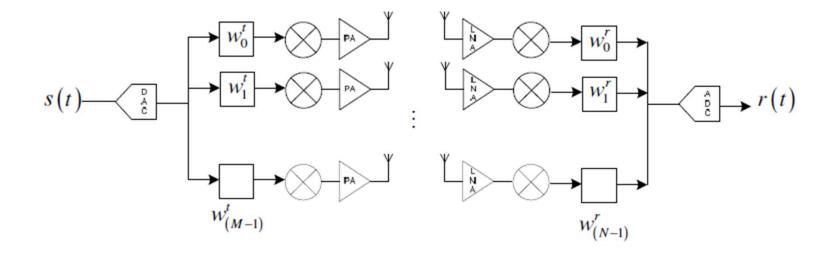
Comparison to Current LTE


- Initial results show significant gain over LTE
 - Further gains with spatial mux, subband scheduling and wider bandwidths

System antenna	Duplex BW	fc (GHz)	Cell throughput (Mbps/cell)		Cell edge rate (Mbps/user, 5%)	
			DL	UL	DL	UL
mmW (64x64)	1 GHz TDD	28	780	850	8.22	11.3
Current LTE (2x2 DL, 2x4 UL)	20+20 MHz FDD	2.5	53.8	47.2	1.80	1.94
Parameters from previous slide with 0-50 UL/DL split & 20% overhead ~ 15x gain				γ x gain	~ 5x ga	ain
TE capacity o	estimates fro	om 36.81	4			
NYU Wireles	S					

NIRELES

- Millimeter Wave: Potentials and Challenges
- Capacity Estimation
 - 28 GHz Measurements in New York City
 - Power Consumption Issues
- Subband Scheduling
- Conclusions and Future Work



From Khan, Pi "Millimeter Wave Mobile Broadband: Unleashing 3-300 GHz spectrum," 2011

- Low power consumption
 - Single mixer and ADC / DAC per digital stream
 - RF phase shifting may lack accuracy

BB Analog Beamforming

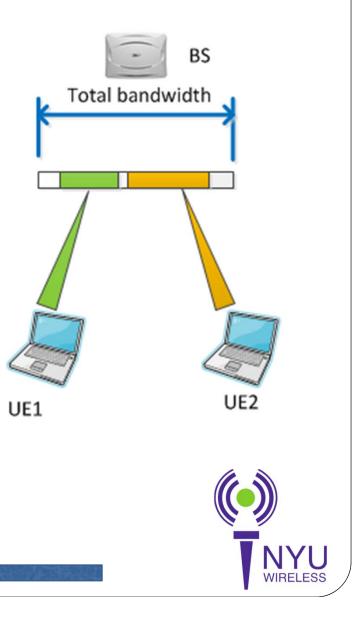
- Intermediate power consumption
 - One mixer per antenna and stream
 - One DAC / ADC + BB amp per stream
 - Lower mixer linearity requirement

Component Power Consumption

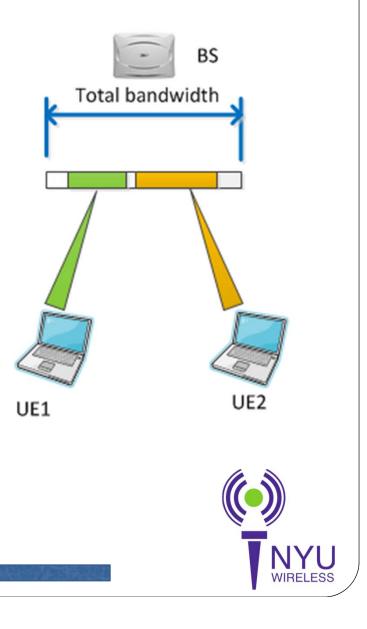
Component	Power (mW)	RF BF	Analog BF	Remarks
РА	*	Ν	Ν	Typ efficiency = 8%
LNA	20	Ν	Ν	
RF shifter	23	KN	0	
Mixer	19	K	Ν	
LO buffer	5	K	2N-1	
Filter	14	K	Ν	
Phase rotator	1.4	0	KN	
BB amp	5	К	Κ	
ADC	255	K	Κ	6 bit, 2 Gsps

K=# streams, N=#antennas

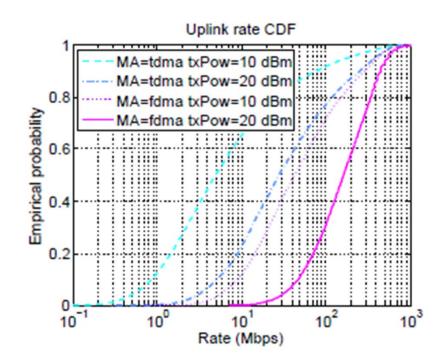
NYU Wireless


15

- Millimeter Wave: Potentials and Challenges
- Capacity Estimation
 - 28 GHz Measurements in New York City
- Power Consumption Issues
 - Subband Scheduling
- Conclusions and Future Work


Subband Scheduling

- Reduce UE power consumption
 - A/D power scales linearly with bandwidth
- Reduced peak rate to individual UE
- But, no loss in total capacity in DL
- Improved capacity in UL
- Enables smaller MAC transport blocks.



Beamforming Optimization

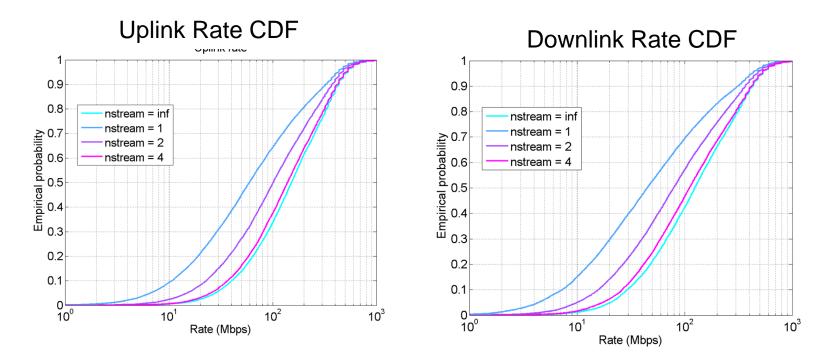
- Each UE needs to only support one digital stream
- But, BS ideally uses different beams to each UE
- What is possible with limited number of digital streams?

Multiple Access & Other Benefits

- Power saving also possible via TDMA and DRX
- Very inefficient in powerlimited regime
 - 10x decrease in UL
- Reduced MAC Transport block
 - Ex: 125 us TTI x 1 GHz x 2 bps/Hz = 250,000 DoF

Beamforming Optimization

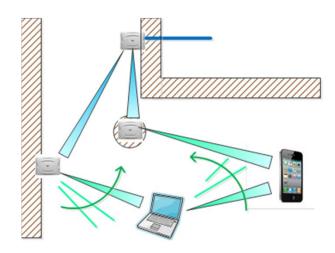
- Parameters
 - N = # antennas, K = # streams at BS
 - $W = N \times K$ unitary beamforming matrix
 - $\gamma_i = Tr(W^*Q_iW) = \text{long-term SNR of UE } i$
- Utility optimization:

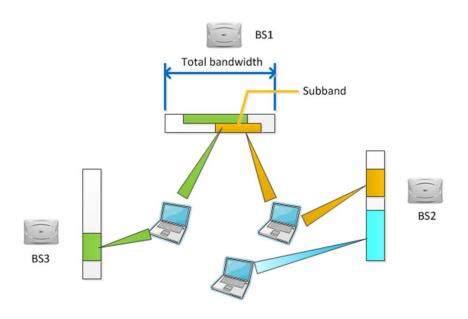

$$\max_{W} \sum_{i} U_i(\gamma_i)$$

- Non-convex, but can perform local optimization easily
 - Weighted power algorithm.

20

Optimization Results


• 4 streams is adequate with 10 UEs per cell



- Millimeter Wave: Potentials and Challenges
- Capacity Estimation
 - 28 GHz Measurements in New York City
- Power Consumption Issues
- Subband Scheduling
 - Conclusions and Future Work

Rethinking LTE for mmW

Directional relaying Mesh networks Carrier aggregation for macrodiversity

- 5th Generation cellular
- Many innovative technologies

Summary

- Significant potential for capacity increase in mmW
 - 1GHzTDD mmW offers 15x over 20+20 MHz LTE FDD
 - But, throughput gains are not uniform
- Systems appears power-limited:
 - Heavy dependence on dense cells & beamforming
 - Strong difference to current cellular systems
 - Traditional methods for increasing capacity may be limited
- Capacity tied closely with front-end capabilities
 - Power consumption issues
 - Number of digital streams, beamforming, ...

References

- Khan, Pi, "Millimeter-wave Mobile Broadband (MMB): Unleashing 3-300GHz Spectrum," Feb 2011, <u>http://www.ieee-wcnc.org/2011/tut/t1.pdf</u>
- Pietraski, Britz, Roy, Pragada, Charlton, "Millimeter wave and terahertz communications: Feasibility and challenges," ZTE Communications, vol. 10, no. 4, pp. 3–12, Dec. 2012.
- Akdeniz, Liu, Rangan, Erkip, "Millimeter Wave Picocellular System Evaluation for Urban Deployments", Apr 2013, <u>http://arxiv.org/abs/1304.3963</u>
- Azar et al, "28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City," to appear ICC 2013
- H. Zhao et al "28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City," ICC 2013
- Samimi, et al "28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City,"VTC 2013.

