Communication Theory Workshop

Joint Space-Division and Multiplexing: How to Achieve Massive MIMO Gains in FDD Systems

Giuseppe Caire

University of Southern California, Viterbi School of Engineering, Los Angeles, CA

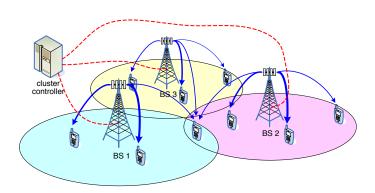
Phuket, Thailand, June 23-26, 2013

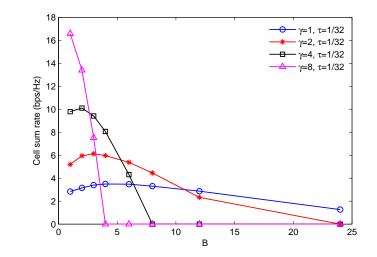
Channel estimation bottleneck on MU-MIMO

• High-SNR capacity of $N_t \times N_r$ single-user MIMO with coherence block-length T [Zheng-Tse, 2003]:

 $C(SNR) = M^*(1 - M^*/T) \log SNR + O(1), \qquad M^* = \min\{N_t, N_r, T/2\}$

- Trivial cooperative bound: for large $M = N_t$ and $N = KN_r$, the coherence block T is the limiting factor.
- \Rightarrow Disappointing theoretical performance of "CoMP" (base station cooperation), in FDD.





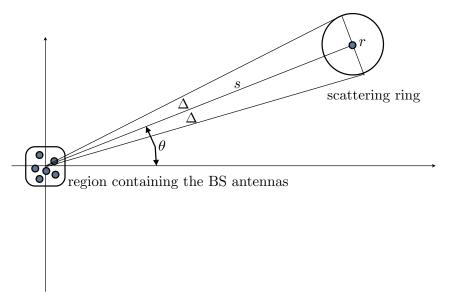
Channel model with antenna correlation

- In FDD, for large macro-cellular base stations, we have to exploit channel dimensionality reduction while still exploiting the large number of antennas at the BS.
- Idea: exploit the asymmetric spatial channel correlation at the BS and at the UTs.
- Isotropic scattering, $|\mathbf{u} \mathbf{u}'| = \lambda D$:

$$\mathbb{E}\left[h(\mathbf{u})h^*(\mathbf{u}')\right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j2\pi D\cos(\alpha)} d\alpha = J_0(2\pi D)$$

• Two users separated by a few meters (say 10 λ) are practically uncorrelated.

• In contrast, the base station sees user groups at different AoAs under narrow AS $\Delta \approx \arctan(r/s)$.



• This leads to the Tx antenna correlation model

 $\mathbf{h} = \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{w}, \quad \mathbf{R} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{H}}$

with

$$[\mathbf{R}]_{m,p} = \frac{1}{2\Delta} \int_{-\Delta}^{\Delta} e^{j\mathbf{k}^{\mathsf{T}}(\alpha+\theta)(\mathbf{u}_m-\mathbf{u}_p)} d\alpha.$$

Joint Space Division and Multiplexing (JSDM)

• K users selected to form G groups, with \approx same channel correlation.

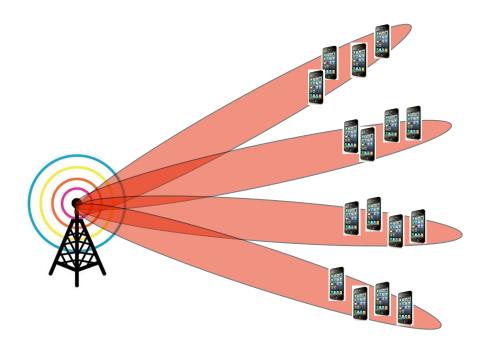
 $\underline{\mathbf{H}} = [\mathbf{H}_1, \dots, \mathbf{H}_G], \text{ with } \mathbf{H}_g = \mathbf{U}_g \mathbf{\Lambda}_g^{1/2} \mathbf{W}_g.$

- Two-stage precoding: V = BP.
- $\mathbf{B} \in \mathbb{C}^{M \times b_g}$ is a pre-beamforming matrix function of $\{\mathbf{U}_g, \mathbf{\Lambda}_g\}$ only.
- $\mathbf{P} \in \mathbb{C}^{b_g \times S_g}$ is a precoding matrix that depends on the effective channel.
- The effective channel matrix is given by

$$\mathbf{\underline{H}}^{\mathsf{H}} = \begin{bmatrix} \mathbf{H}_{1}^{\mathsf{H}} \mathbf{B}_{1} & \mathbf{H}_{1}^{\mathsf{H}} \mathbf{B}_{2} & \cdots & \mathbf{H}_{1}^{\mathsf{H}} \mathbf{B}_{G} \\ \mathbf{H}_{2}^{\mathsf{H}} \mathbf{B}_{1} & \mathbf{H}_{2}^{\mathsf{H}} \mathbf{B}_{2} & \cdots & \mathbf{H}_{2}^{\mathsf{H}} \mathbf{B}_{G} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{H}_{G}^{\mathsf{H}} \mathbf{B}_{1} & \mathbf{H}_{G}^{\mathsf{H}} \mathbf{B}_{2} & \cdots & \mathbf{H}_{G}^{\mathsf{H}} \mathbf{B}_{G} \end{bmatrix}$$

- Per-Group Processing: If estimation and feedback of the whole $\underline{\mathbf{H}}$ is still too costly, then each group estimates its own diagonal block $\mathbf{H}_g = \mathbf{B}_g^{\mathsf{H}} \mathbf{H}_g$, and $\mathbf{P} = \operatorname{diag}(\mathbf{P}_1, \cdots, \mathbf{P}_G)$.
- This results in

$$\mathbf{y}_g = \mathbf{H}_g^\mathsf{H} \mathbf{B}_g \mathbf{P}_g \mathbf{d}_g + \sum_{g'
eq g} \mathbf{H}_g^\mathsf{H} \mathbf{B}_{g'} \mathbf{P}_{g'} \mathbf{d}_{g'} + \mathbf{z}_g$$



- Let $r = \sum_{g=1}^{G} r_g$ and suppose that the channel covariances of the *G* groups are such that $\underline{\mathbf{U}} = [\mathbf{U}_1, \cdots, \mathbf{U}_G]$ is $M \times r$ tall unitary (i.e., $r \leq M$ and $\underline{\mathbf{U}}^{\mathsf{H}} \underline{\mathbf{U}} = \mathbf{I}_r$).
- Eigen-beamforming (let $b_g = r_g$ and $\mathbf{B}_g = \mathbf{U}_g$) achieves exact block diagonalization.
- The decoupled MU-MIMO channel takes on the form

 $\mathbf{y}_g = \mathbf{H}_g^{\mathsf{H}} \mathbf{P}_g \mathbf{d}_g + \mathbf{z}_g = \mathbf{W}_g^{\mathsf{H}} \Lambda_g^{1/2} \mathbf{P}_g \mathbf{d}_g + \mathbf{z}_g, \quad \text{for } g = 1, \dots, G,$

where \mathbf{W}_g is a $r_g \times K_g$ i.i.d. matrix with elements $\sim \mathcal{CN}(0,1)$.

Theorem 1. For \underline{U} tall unitary, JSDM with PGP achieves the same sum capacity of the corresponding MU-MIMO downlink channel with full CSIT.

• For given target numbers of streams per group $\{S_g\}$ and dimensions $\{b_g\}$ satisfying $S_g \leq b_g \leq r_g$, we can find the pre-beamforming matrices \mathbf{B}_g such that:

 $\mathbf{U}_{g'}^{\mathsf{H}}\mathbf{B}_g = \mathbf{0} \quad \forall \ g' \neq g, \text{ and } \operatorname{rank}(\mathbf{U}_g^{\mathsf{H}}\mathbf{B}_g) \geq S_g$

• Necessary condition for exact BD

 $\operatorname{Span}(\mathbf{B}_g) \subseteq \operatorname{Span}^{\perp}(\{\mathbf{U}_{g'}: g' \neq g\}).$

- When $\text{Span}^{\perp}(\{\mathbf{U}_{g'} : g' \neq g\})$ has dimension smaller than S_g , the rank condition on the diagonal blocks cannot be satisfied.
- In this case, S_g should be reduced (reduce the number of served users per group) or, as an alternative, approximated BD based on selecting $r_g^{\star} < r_g$ dominant eigenmodes for each group g can be implemented.

- The transformed channel matrix <u>H</u> has dimension $b \times S$, with blocks H_g of dimension $b_g \times S_g$.
- For simplicity we allocate to all users the same fraction of the total transmit power, $p_{g_k} = \frac{P}{S}$.
- For PGP, the regularized zero forcing (RZF) precoding matrix for group g is given by

$$\mathbf{P}_{g,\mathrm{rzf}} = \bar{\zeta}_g \bar{\mathbf{K}}_g \mathbf{H}_g,$$

where

$$\bar{\mathbf{K}}_g = \left[\mathbf{H}_g \mathbf{H}_g^{\mathsf{H}} + b_g \alpha \mathbf{I}_{b_g}\right]^{-1}$$

and where

$$\bar{\zeta}_g^2 = \frac{S'}{\operatorname{tr}(\mathbf{H}_g^{\mathsf{H}}\mathbf{K}_g^{\mathsf{H}}\mathbf{B}_g^{\mathsf{H}}\mathbf{B}_g^{\mathsf{H}}\mathbf{B}_g\mathbf{K}_g\mathbf{H}_g)}.$$

• The SINR of user g_k given by

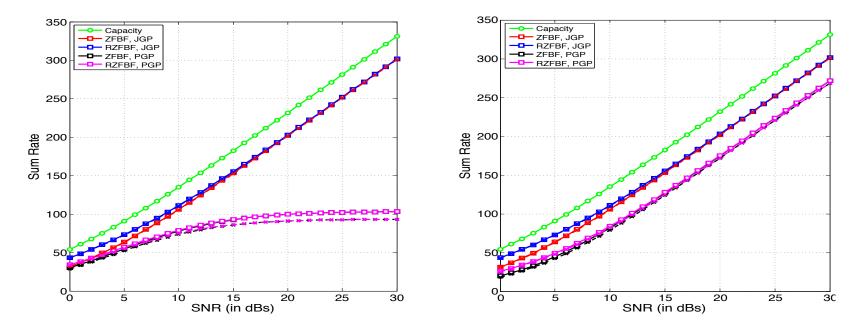
$$\gamma_{g_k,\text{pgp}} = \frac{\frac{P}{S}\bar{\zeta}_g^2|\mathbf{h}_{g_k}^{\mathsf{H}}\mathbf{B}_g\bar{\mathbf{K}}_g\mathbf{B}_g^{\mathsf{H}}\mathbf{h}_{g_k}|^2}{\frac{P}{S}\sum_{j\neq k}\bar{\zeta}_g^2|\mathbf{h}_{g_k}^{\mathsf{H}}\mathbf{B}_g\bar{\mathbf{K}}_g\mathbf{B}_g^{\mathsf{H}}\mathbf{h}_{g_j}|^2 + \frac{P}{S}\sum_{g'\neq g}\sum_j\bar{\zeta}_{g'}^2|\mathbf{h}_{g_k}^{\mathsf{H}}\mathbf{B}_{g'}\bar{\mathbf{K}}_{g'}\mathbf{B}_{g'}^{\mathsf{H}}\mathbf{h}_{g'_j}|^2 + 1}$$

• Using the "deterministic equivalent" method of [Wagner, Couillet, Debbah, Slock, 2011], we can calculate $\gamma_{g_k, pgp}^o$ such that

$$\gamma_{g_k,\mathrm{pgp}} - \gamma^o_{g_k,\mathrm{pgp}} \stackrel{M \to \infty}{\longrightarrow} 0$$

Example

- M = 100, G = 6 user groups, Rank $(\mathbf{R}_g) = 21$, effective rank $r_g^* = 11$.
- We serve S' = 5 users per group with b' = 10, $r^* = 6$ and $r^* = 12$.
- For $r_g^* = 12$: 150 bit/s/Hz at SNR = 18 dB: 5 bit/s/Hz per user, for 30 users served simultaneously on the same time-frequency slot.



- Full CSI: 100 × 30 channel matrix ⇒ 3000 complex channel coefficients per coherence block (CSI feedback), with 100 × 100 unitary "common" pilot matrix for downlink channel estimation.
- JSDM with PGP: 6 × 10 × 5 diagonal blocks ⇒ 300 complex channel coefficients per coherence block (CSI feedback), with 10 × 10 unitary "dedicated" pilot matrices for downlink channel estimation, sent in parallel to each group through the pre-beamforming matrix.
- One order of magnitude saving in both downlink training and CSI feedback.
- Computation: 6 matrix inversions of dimension 5×5 , with respect to one matrix inversion of dimension 30×30 .

- Parallel downlink training in all groups: a scaled unitary training matrix X_{tr} of dimension $b' \times b'$ is sent, simultaneously, to all groups in the common downlink training phase.
- Received signal at group *g* receivers is given by

$$\mathbf{Y}_g = \mathbf{H}_g^{\mathsf{H}} \mathbf{X}_{\mathrm{tr}} + \sum_{g' \neq g} \mathbf{H}_g^{\mathsf{H}} \mathbf{B}_{g'} \mathbf{X}_{\mathrm{tr}} + \mathbf{Z}_g.$$

 Multiplying from the right by X^H_{tr} and letting ρ_{tr} denote the power allocated to training, we obtain

$$\mathbf{Y}_{g}\mathbf{X}_{\mathrm{tr}}^{\mathsf{H}} = \rho_{\mathrm{tr}}\mathbf{H}_{g}^{\mathsf{H}} + \rho_{\mathrm{tr}}\sum_{g' \neq g}\mathbf{H}_{g}^{\mathsf{H}}\mathbf{B}_{g'} + \mathbf{Z}_{g}\mathbf{X}_{\mathrm{tr}}^{\mathsf{H}}.$$

• The relevant observation for the g_k -th user effective channel is:

$$\widetilde{\mathbf{h}}_{g_k} = \sqrt{\rho_{\mathrm{tr}}} \mathbf{h}_{g_k} + \sqrt{\rho_{\mathrm{tr}}} \left(\sum_{g' \neq g} \mathbf{B}_{g'}^{\mathsf{H}} \right) \mathbf{h}_{g_k} + \widetilde{\mathbf{z}}_{g_k}.$$

• The corresponding MMSE estimator is given by

$$\begin{split} \widehat{\mathbf{h}}_{g_{k}} &= \mathbb{E}\left[\mathbf{h}_{g_{k}}\widetilde{\mathbf{h}}_{g_{k}}^{\mathsf{H}}\right] \mathbb{E}\left[\widetilde{\mathbf{h}}_{g_{k}}\widetilde{\mathbf{h}}_{g_{k}}^{\mathsf{H}}\right]^{-1} \widetilde{\mathbf{h}}_{g_{k}} \\ &= \sqrt{\rho_{\mathrm{tr}}}\left[\mathbf{B}_{g}^{\mathsf{H}}\mathbf{R}_{g}\sum_{g'=1}^{G}\mathbf{B}_{g'}\right] \left[\rho_{\mathrm{tr}}\sum_{g',g''=1}^{G}\mathbf{B}_{g'}^{\mathsf{H}}\mathbf{R}_{g}\mathbf{B}_{g''} + \mathbf{I}_{b'}\right]^{-1} \widetilde{\mathbf{h}}_{g_{k}} \\ &= \frac{1}{\sqrt{\rho_{\mathrm{tr}}}}\left(\mathbf{M}_{g}\tilde{\mathbf{R}}_{g}\mathbf{O}^{\mathsf{T}}\right) \left[\mathbf{O}\tilde{\mathbf{R}}_{g}\mathbf{O}^{\mathsf{T}} + \frac{1}{\rho_{\mathrm{tr}}}\mathbf{I}_{b'}\right]^{-1} \widetilde{\mathbf{h}}_{g_{k}} \end{split}$$

where we used the fact that $\mathbf{h}_{g_k} = \mathbf{B}_g^{\mathsf{H}} \mathbf{h}_{g_k}$, and we introduced the $b' \times b$ block matrices

$$\mathbf{M}_g = [\mathbf{0}, \dots, \mathbf{0}, \underbrace{\mathbf{I}_{b'}}_{\text{block } g}, \mathbf{0}, \dots, \mathbf{0}]$$
$$\mathbf{O} = [\mathbf{I}_{b'}, \mathbf{I}_{b'}, \dots, \mathbf{I}_{b'}].$$

• Notice that in the case of perfect BD we have that $\mathbf{R}_{g}\mathbf{B}_{g'} = \mathbf{0}$ for $g' \neq g$. Therefore, the MMSE estimator reduces to

$$\widehat{\mathbf{h}}_{g_k} = \frac{1}{\sqrt{\rho_{\mathrm{tr}}}} \bar{\mathbf{R}}_g \left[\bar{\mathbf{R}}_g + \frac{1}{\rho_{\mathrm{tr}}} \mathbf{I}_{b'} \right]^{-1} \widetilde{\mathbf{h}}_{g_k}$$

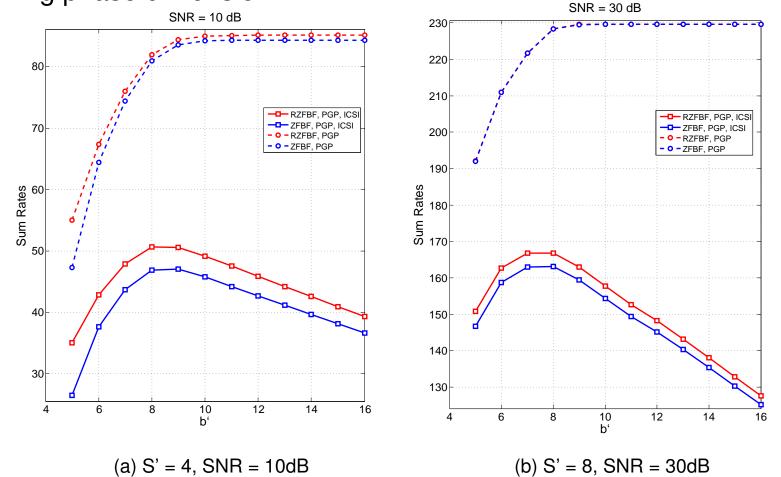
where $\bar{\mathbf{R}}_g = \mathbf{B}_g^{\mathsf{H}} \mathbf{R}_g \mathbf{B}_g$.

- Also in this case, the deterministic equivalent approximations of the SINR terms for RZFBF and ZFBF precoding can be be computed.
- Eventually, the achievable rate of user g_k is given by

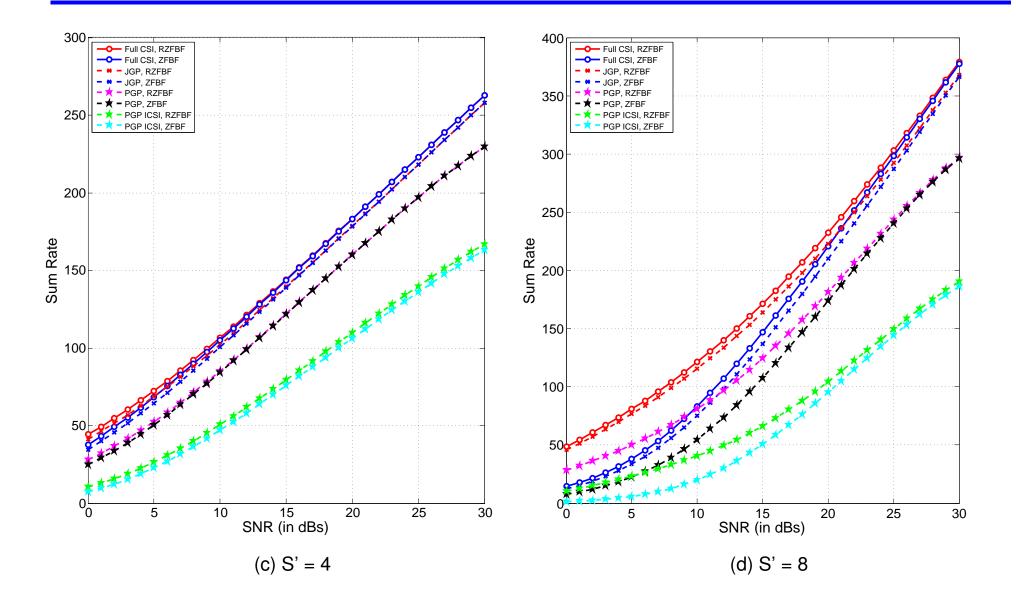
$$R_{g_k, \text{pgp,csit}} = \max\left\{1 - \frac{b'}{T}, 0\right\} \times \log\left(1 + \widehat{\gamma}^o_{g_k, \text{pgp,csit}}\right).$$

Tradeoff parameter *b*'

 b' large yields better conditioned matrices, but it "costs" more in terms of training phase dimension.



Impact of non-ideal CSIT



Discussion: is the tall unitary realistic?

• For a Uniform Linear Array (ULA), \mathbf{R} is Toeplitz, with elements

$$[\mathbf{R}]_{m,p} = \frac{1}{2\Delta} \int_{-\Delta}^{\Delta} e^{-j2\pi D(m-p)\sin(\alpha+\theta)} d\alpha, \quad m,p \in \{0,1,\dots,M-1\}$$

- We are interested in calculating the asymptotic rank, eigenvalue CDF and structure of the eigenvectors, for M large, for given geometry parameters D, θ, Δ .
- Correlation function

$$r_m = \frac{1}{2\Delta} \int_{-\Delta}^{\Delta} e^{-j2\pi Dm\sin(\alpha+\theta)} d\alpha.$$

 As M → ∞, the eigenvalues of R tend to the "power spectral density" (i.e., the DT Fourier transform of r_m),

$$S(\xi) = \sum_{m=-\infty}^{\infty} r_m e^{-j2\pi\xi m}$$

sampled at $\xi = k/M$, for $k = 0, \dots, M - 1$.

• After some algebra, we arrive at

$$S(\xi) = \frac{1}{2\Delta} \sum_{m \in [D\sin(-\Delta+\theta)+\xi, D\sin(\Delta+\theta)+\xi]} \frac{1}{\sqrt{D^2 - (m-\xi)^2}}.$$

Szego's Theorem: eigenvalues

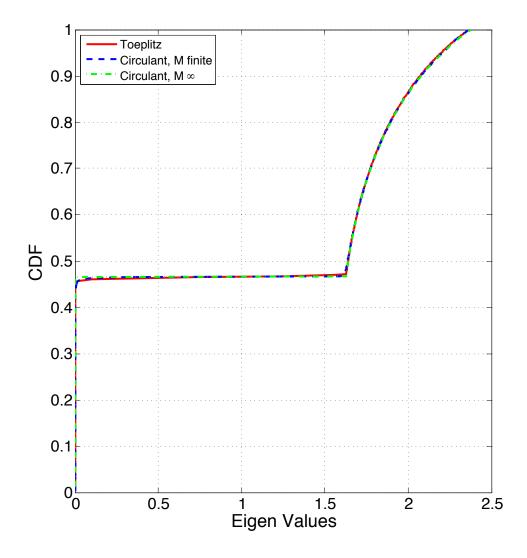
Theorem 2. The empirical spectral distribution of the eigenvalues of \mathbf{R} ,

$$F_{\mathbf{R}}^{(M)}(\lambda) = \frac{1}{M} \sum_{m=1}^{M} \mathbb{1}\{\lambda_m(\mathbf{R}) \le \lambda\},\$$

converges weakly to the limiting spectral distribution

$$\lim_{M \to \infty} F_{\mathbf{R}}^{(M)}(\lambda) = F(\lambda) = \int_{S(\xi) \le \lambda} d\xi.$$

Example: $M = 400, \theta = \pi/6, D = 1, \Delta = \pi/10$. Exact empirical eigenvalue cdf of **R** (red), its approximation the circulant matrix **C** (dashed blue) and its approximation from the samples of $S(\xi)$ (dashed green).



Theorem 3. Let $\lambda_0(\mathbf{R}) \leq \ldots, \leq \lambda_{M-1}(\mathbf{R})$ and $\lambda_0(\mathbf{C}) \leq \ldots, \leq \lambda_{M-1}(\mathbf{C})$ denote the set of ordered eigenvalues of \mathbf{R} and \mathbf{C} , and let $\mathbf{U} = [\mathbf{u}_0, \ldots, \mathbf{u}_{M-1}]$ and $\mathbf{F} = [\mathbf{f}_0, \ldots, \mathbf{f}_{M-1}]$ denote the corresponding eigenvectors. For any interval $[a, b] \subseteq [\kappa_1, \kappa_2]$ such that $F(\lambda)$ is continuous on [a, b], consider the eigenvalues index sets $\mathcal{I}_{[a,b]} = \{m : \lambda_m(\mathbf{R}) \in [a, b]\}$ and $\mathcal{J}_{[a,b]} = \{m : \lambda_m(\mathbf{C}) \in [a, b]\}$, and define $\mathbf{U}_{[a,b]} = (\mathbf{u}_m : m \in \mathcal{I}_{[a,b]})$ and $\mathbf{F}_{[a,b]} = (\mathbf{f}_m : m \in \mathcal{J}_{[a,b]})$ be the submatrices of \mathbf{U} and \mathbf{F} formed by the columns whose indices belong to the sets $\mathcal{I}_{[a,b]}$ and $\mathcal{J}_{[a,b]}$, respectively. Then, the eigenvectors of \mathbf{C} approximate the eigenvectors of \mathbf{R} in the sense that

$$\lim_{M \to \infty} \frac{1}{M} \left\| \mathbf{U}_{[a,b]} \mathbf{U}_{[a,b]}^{\mathsf{H}} - \mathbf{F}_{[a,b]} \mathbf{F}_{[a,b]}^{\mathsf{H}} \right\|_{F}^{2} = 0.$$

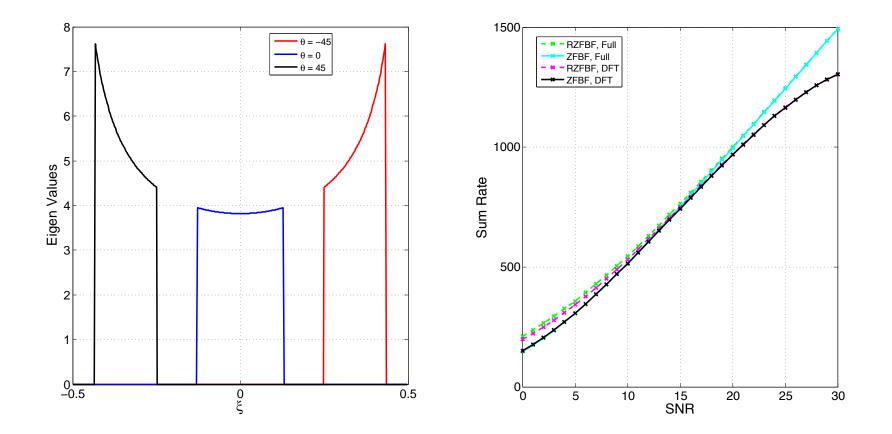
Consequence 1: U_g is well approximated by a "slice" of the DFT matrix. **Consequence 2:** DFT pre-beamforming is near optimal for large M. **Theorem 4.** The asymptotic normalized rank of the channel covariance matrix \mathbf{R} , with antenna separation λD , AoA θ and AS Δ , is given by

 $\rho = \min\{1, B(D, \theta, \Delta)\},\$

with $B(D, \theta, \Delta) = |D\sin(-\Delta + \theta) - D\sin(\Delta + \theta)|$.

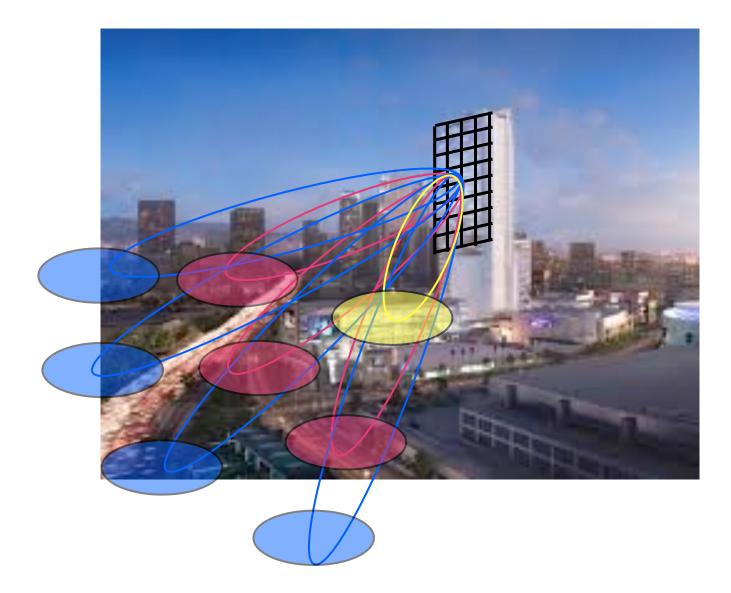
Theorem 5. Groups g and g' with angle of arrival θ_g and $\theta_{g'}$ and common angular spread Δ have spectra with disjoint support if their AoA intervals $[\theta_g - \Delta, \theta_g + \Delta]$ and $[\theta_{g'} - \Delta, \theta_{g'} + \Delta]$ are disjoint.

DFT Pre-Beamforming



• ULA with M = 400, G = 3, $\theta_1 = \frac{-\pi}{4}$, $\theta_2 = 0$, $\theta_3 = \frac{\pi}{4}$, D = 1/2 and $\Delta = 15$ deg.

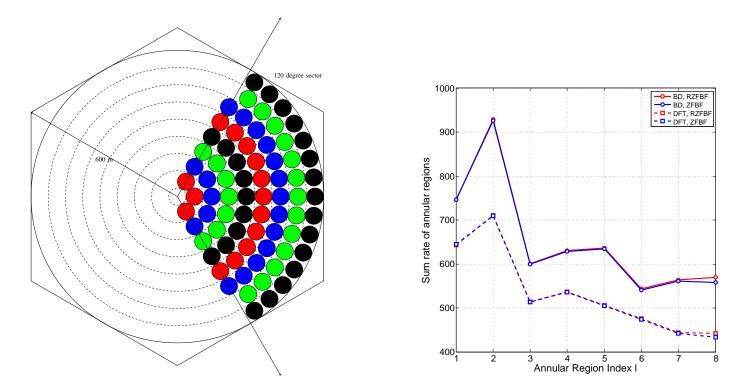
Super-Massive MIMO



- Idea: produce a 3D pre-beamforming by Kronecker product of a "vertical" beamforming, separating the sector into L concentric regions, and a "horizontal" beamforming, separating each ℓ -th region into G_{ℓ} groups.
- Horizontal beam forming is as before.
- For vertical beam forming we just need to find one dominating eigenmode per region, and use the BD approach.
- A set of simultaneously served groups forms a "pattern".
- Patterns need not cover the whole sector.
- Different intertwined patterns can be multiplexed in the time-frequency domain in order to guarantee a fair coverage.

An example

- Cell radius 600m, group ring radius 30m, array height 50m, M = 200 columns, N = 300 rows.
- Pathloss $g(x) = \frac{1}{1 + (\frac{x}{d_0})^{\delta}}$ with $\delta = 3.8$ and $d_0 = 30$ m.
- Same color regions are served simultaneously. Each ring is given equal power.



Sum throughput (bit/s/Hz) under PFS and Max-min Fairness

Scheme	Approximate BD	DFT based
PFS, RZFBF	1304.4611	1067.9604
PFS, ZFBF	1298.7944	1064.2678
MAXMIN, RZFBF	1273.7203	1042.1833
MAXMIN, ZFBF	1267.2368	1037.2915

1000 bit/s/Hz \times 40 MHz of bandwidth = 40 Gb/s per sector.

- Compatibility with an in-band Small-Cell tier: eICIC in the spatial domain: turn on and off the "spotbeams".
- Multi-cell strategies: activate mutually compatible patterns of groups in adjacent sectors.
- User grouping: we developed a very efficient way to cluster users according to their dominant subspaces (quantization according to chordal distance).
 See [Adhikary, Caire, arXiv:1305.7252].
- Hybrid Beamforming and mm-wave application: the DFT pre-beamforming can be implemented by phase shifters in analog domain.
- Estimation of the long-term channel statistics: revamped interest in superresolution methods (MUSIC, ESPRIT) especially for the mm-wave case.

Conclusions

- Exploiting transmit antenna correlation reduces the channel to a simpler \approx block diagonal structure.
- This is generalized sectorization! with MU-MIMO independently in each "sector" (group).
- We need only very coarse information on AoA and AS for the users DFT pre-beamforming.
- The idea can be easily extended to 3D beamforming (introducing elevation direction, Kronecker product structure).
- Downlink training, CSIT feedback and computation are greatly reduced (suitable for FDD).
- JSDM lends itself naturally to spatial-domain eICIC, simple inter-cell coordination, hybrid beamforming for mm-wave applications.

Thank You