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Channel estimation bottleneck on MU-MIMO

• High-SNR capacity of Nt×Nr single-user MIMO with coherence block-length
T [Zheng-Tse, 2003]:

C(SNR) = M∗(1−M∗/T ) log SNR +O(1), M∗ = min{Nt, Nr, T/2}

• Trivial cooperative bound: for large M = Nt and N = KNr, the coherence
block T is the limiting factor.

• ⇒ Disappointing theoretical performance of “CoMP” (base station
cooperation), in FDD.
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Channel model with antenna correlation

• In FDD, for large macro-cellular base stations, we have to exploit channel
dimensionality reduction while still exploiting the large number of antennas at
the BS.

• Idea: exploit the asymmetric spatial channel correlation at the BS and at the
UTs.

• Isotropic scattering, |u− u′| = λD:

E [h(u)h∗(u′)] =
1

2π

∫ π

−π
e−j2πD cos(α)dα = J0(2πD)

• Two users separated by a few meters (say 10 λ) are practically uncorrelated.
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• In contrast, the base station sees user groups at different AoAs under narrow
AS ∆ ≈ arctan(r/s).
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scattering ring

region containing the BS antennas

• This leads to the Tx antenna correlation model

h = UΛ1/2w, R = UΛUH

with
[R]m,p =

1
2∆

∫ ∆

−∆

ejk
T(α+θ)(um−up)dα.
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Joint Space Division and Multiplexing (JSDM)

• K users selected to form G groups, with ≈ same channel correlation.

H = [H1, . . . ,HG], with Hg = UgΛ1/2
g Wg.

• Two-stage precoding: V = BP.

• B ∈ CM×bg is a pre-beamforming matrix function of {Ug,Λg} only.

• P ∈ Cbg×Sg is a precoding matrix that depends on the effective channel.

• The effective channel matrix is given by

HH =


HH

1B1 HH
1B2 · · · HH

1BG

HH
2B1 HH

2B2 · · · HH
2BG

... ... . . . ...
HH
GB1 HH

GB2 · · · HH
GBG

 .
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• Per-Group Processing: If estimation and feedback of the whole H is still too
costly, then each group estimates its own diagonal block Hg = BH

gHg, and
P = diag(P1, · · · ,PG).

• This results in

yg = HH
gBgPgdg +

∑
g′ 6=g

HH
gBg′Pg′dg′ + zg
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Achieving capacity with reduced CSIT

• Let r =
∑G
g=1 rg and suppose that the channel covariances of the G groups

are such that U = [U1, · · · ,UG] is M × r tall unitary (i.e., r ≤M and UHU =
Ir).

• Eigen-beamforming (let bg = rg and Bg = Ug) achieves exact block
diagonalization.

• The decoupled MU-MIMO channel takes on the form

yg = HgHPgdg + zg = WH
gΛ1/2

g Pgdg + zg, for g = 1, . . . , G,

where Wg is a rg ×Kg i.i.d. matrix with elements ∼ CN (0, 1).

Theorem 1. For U tall unitary, JSDM with PGP achieves the same sum
capacity of the corresponding MU-MIMO downlink channel with full CSIT.
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Block Diagonalization

• For given target numbers of streams per group {Sg} and dimensions {bg}
satisfying Sg ≤ bg ≤ rg, we can find the pre-beamforming matrices Bg such
that:

UH
g′Bg = 0 ∀ g′ 6= g, and rank(UH

gBg) ≥ Sg

• Necessary condition for exact BD

Span(Bg) ⊆ Span⊥({Ug′ : g′ 6= g}).

• When Span⊥({Ug′ : g′ 6= g}) has dimension smaller than Sg, the rank
condition on the diagonal blocks cannot be satisfied.

• In this case, Sg should be reduced (reduce the number of served users per
group) or, as an alternative, approximated BD based on selecting r?g < rg
dominant eigenmodes for each group g can be implemented.
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Performance analysis with regularized ZF

• The transformed channel matrix H has dimension b × S, with blocks Hg of
dimension bg × Sg.

• For simplicity we allocate to all users the same fraction of the total transmit
power, pgk = P

S .

• For PGP, the regularized zero forcing (RZF) precoding matrix for group g is
given by

Pg,rzf = ζ̄gK̄gHg,
where

K̄g =
[
HgHH

g + bgαIbg
]−1

and where
ζ̄2
g =

S′

tr(HH
gKH

gBH
gBgKgHg)

.
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• The SINR of user gk given by

γgk,pgp =
P
S ζ̄

2
g |hH

gk
BgK̄gBH

ghgk|2
P
S

∑
j 6=k ζ̄

2
g |hH

gk
BgK̄gBH

ghgj|2 + P
S

∑
g′ 6=g

∑
j ζ̄

2
g′|hH

gk
Bg′K̄g′BH

g′hg′j|
2 + 1

• Using the “deterministic equivalent” method of [Wagner, Couillet, Debbah,
Slock, 2011], we can calculate γogk,pgp such that

γgk,pgp − γogk,pgp
M→∞−→ 0
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Example

• M = 100, G = 6 user groups, Rank(Rg) = 21, effective rank r∗g = 11.

• We serve S′ = 5 users per group with b′ = 10, r? = 6 and r? = 12.

• For r∗g = 12: 150 bit/s/Hz at SNR = 18 dB: 5 bit/s/Hz per user, for 30 users
served simultaneously on the same time-frequency slot.
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Training, Feedback and Computations Requirements

• Full CSI: 100 × 30 channel matrix ⇒ 3000 complex channel coefficients per
coherence block (CSI feedback), with 100×100 unitary “common” pilot matrix
for downlink channel estimation.

• JSDM with PGP: 6 × 10 × 5 diagonal blocks ⇒ 300 complex channel
coefficients per coherence block (CSI feedback), with 10 × 10 unitary
“dedicated” pilot matrices for downlink channel estimation, sent in parallel
to each group through the pre-beamforming matrix.

• One order of magnitude saving in both downlink training and CSI feedback.

• Computation: 6 matrix inversions of dimension 5 × 5, with respect to one
matrix inversion of dimension 30× 30.
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Non-ideal CSIT

• Parallel downlink training in all groups: a scaled unitary training matrix Xtr of
dimension b′×b′ is sent, simultaneously, to all groups in the common downlink
training phase.

• Received signal at group g receivers is given by

Yg = HH
gXtr +

∑
g′ 6=g

Hg
HBg′Xtr + Zg.

• Multiplying from the right by XH
tr and letting ρtr denote the power allocated to

training, we obtain

YgXH
tr = ρtrHH

g + ρtr

∑
g′ 6=g

Hg
HBg′ + ZgXH

tr.
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• The relevant observation for the gk-th user effective channel is:

h̃gk =
√
ρtrhgk +

√
ρtr

∑
g′ 6=g

BH
g′

hgk + z̃gk.

• The corresponding MMSE estimator is given by

ĥgk = E
[
hgkh̃

H

gk

]
E
[
h̃gkh̃

H

gk

]−1

h̃gk

=
√
ρtr

BH
gRg

G∑
g′=1

Bg′

ρtr

G∑
g′,g′′=1

BH
g′RgBg′′ + Ib′

−1

h̃gk

=
1
√
ρtr

(
MgR̃gOT

)[
OR̃gOT +

1
ρtr

Ib′
]−1

h̃gk

13



where we used the fact that hgk = BH
ghgk, and we introduced the b′ × b block

matrices

Mg = [0, . . . ,0, Ib′︸︷︷︸
block g

,0, . . . ,0]

O = [Ib′, Ib′, . . . , Ib′].

• Notice that in the case of perfect BD we have that RgBg′ = 0 for g′ 6= g.
Therefore, the MMSE estimator reduces to

ĥgk =
1
√
ρtr

R̄g

[
R̄g +

1
ρtr

Ib′
]−1

h̃gk

where R̄g = BH
gRgBg.

14



• Also in this case, the deterministic equivalent approximations of the SINR
terms for RZFBF and ZFBF precoding can be be computed.

• Eventually, the achievable rate of user gk is given by

Rgk,pgp,csit = max
{

1− b′

T
, 0
}
× log

(
1 + γ̂ogk,pgp,csit

)
.
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Tradeoff parameter b′

• b′ large yields better conditioned matrices, but it “costs” more in terms of
training phase dimension.
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Impact of non-ideal CSIT
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Discussion: is the tall unitary realistic?

• For a Uniform Linear Array (ULA), R is Toeplitz, with elements

[R]m,p =
1

2∆

∫ ∆

−∆

e−j2πD(m−p) sin(α+θ)dα, m, p ∈ {0, 1, . . . ,M − 1}

• We are interested in calculating the asymptotic rank, eigenvalue CDF and
structure of the eigenvectors, for M large, for given geometry parameters
D, θ,∆.

• Correlation function

rm =
1

2∆

∫ ∆

−∆

e−j2πDm sin(α+θ)dα.
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• As M → ∞, the eigenvalues of R tend to the “power spectral density” (i.e.,
the DT Fourier transform of rm),

S(ξ) =
∞∑

m=−∞
rme

−j2πξm

sampled at ξ = k/M , for k = 0, . . . ,M − 1.

• After some algebra, we arrive at

S(ξ) =
1

2∆

∑
m∈[D sin(−∆+θ)+ξ,D sin(∆+θ)+ξ]

1√
D2 − (m− ξ)2

.
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Szego’s Theorem: eigenvalues

Theorem 2. The empirical spectral distribution of the eigenvalues of R,

F
(M)
R (λ) =

1
M

M∑
m=1

1{λm(R) ≤ λ},

converges weakly to the limiting spectral distribution

lim
M→∞

F
(M)
R (λ) = F (λ) =

∫
S(ξ)≤λ

dξ.
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Example: M = 400, θ = π/6, D = 1,∆ = π/10. Exact empirical eigenvalue cdf
of R (red), its approximation the circulant matrix C (dashed blue) and its
approximation from the samples of S(ξ) (dashed green).

0 0.5 1 1.5 2 2.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigen Values

C
D

F

 

 
Toeplitz
Circulant, M finite
Circulant, M ∞

21



A less well-known Szego’s Theorem: eigenvectors

Theorem 3. Let λ0(R) ≤ . . . ,≤ λM−1(R) and λ0(C) ≤ . . . ,≤ λM−1(C)
denote the set of ordered eigenvalues of R and C, and let U = [u0, . . . ,uM−1]
and F = [f0, . . . , fM−1] denote the corresponding eigenvectors. For any interval
[a, b] ⊆ [κ1, κ2] such that F (λ) is continuous on [a, b], consider the eigenvalues
index sets I[a,b] = {m : λm(R) ∈ [a, b]} and J[a,b] = {m : λm(C) ∈ [a, b]},
and define U[a,b] = (um : m ∈ I[a,b]) and F[a,b] = (fm : m ∈ J[a,b]) be the
submatrices of U and F formed by the columns whose indices belong to the
sets I[a,b] and J[a,b], respectively. Then, the eigenvectors of C approximate the
eigenvectors of R in the sense that

lim
M→∞

1
M

∥∥∥U[a,b]UH
[a,b] − F[a,b]FH

[a,b]

∥∥∥2

F
= 0.

Consequence 1: Ug is well approximated by a “slice” of the DFT matrix.
Consequence 2: DFT pre-beamforming is near optimal for large M .
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Theorem 4. The asymptotic normalized rank of the channel covariance matrix
R, with antenna separation λD, AoA θ and AS ∆, is given by

ρ = min{1, B(D, θ,∆)},

with B(D, θ,∆) = |D sin(−∆ + θ)−D sin(∆ + θ)|.

Theorem 5. Groups g and g′ with angle of arrival θg and θg′ and common
angular spread ∆ have spectra with disjoint support if their AoA intervals
[θg −∆, θg + ∆] and [θg′ −∆, θg′ + ∆] are disjoint.
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DFT Pre-Beamforming
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• ULA with M = 400, G = 3, θ1 = −π
4 , θ2 = 0, θ3 = π

4 , D = 1/2 and ∆ = 15 deg.
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Super-Massive MIMO
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• Idea: produce a 3D pre-beamforming by Kronecker product of a “vertical”
beamforming, separating the sector into L concentric regions, and a
“horizontal” beamforming, separating each `-th region into G` groups.

• Horizontal beam forming is as before.

• For vertical beam forming we just need to find one dominating eigenmode
per region, and use the BD approach.

• A set of simultaneously served groups forms a “pattern”.

• Patterns need not cover the whole sector.

• Different intertwined patterns can be multiplexed in the time-frequency
domain in order to guarantee a fair coverage.
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An example

• Cell radius 600m, group ring radius 30m, array height 50m, M = 200
columns, N = 300 rows.

• Pathloss g(x) = 1
1+( xd0

)δ
with δ = 3.8 and d0 = 30m.

• Same color regions are served simultaneously. Each ring is given equal
power.
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Sum throughput (bit/s/Hz) under PFS and Max-min Fairness

Scheme Approximate BD DFT based
PFS, RZFBF 1304.4611 1067.9604
PFS, ZFBF 1298.7944 1064.2678

MAXMIN, RZFBF 1273.7203 1042.1833
MAXMIN, ZFBF 1267.2368 1037.2915

1000 bit/s/Hz × 40 MHz of bandwidth = 40 Gb/s per sector.
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Our on-going work

• Compatibility with an in-band Small-Cell tier: eICIC in the spatial domain:
turn on and off the “spotbeams”.

• Multi-cell strategies: activate mutually compatible patterns of groups in
adjacent sectors.

• User grouping: we developed a very efficient way to cluster users according
to their dominant subspaces (quantization according to chordal distance).
See [Adhikary, Caire, arXiv:1305.7252].

• Hybrid Beamforming and mm-wave application: the DFT pre-beamforming
can be implemented by phase shifters in analog domain.

• Estimation of the long-term channel statistics: revamped interest in super-
resolution methods (MUSIC, ESPRIT) especially for the mm-wave case.
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Conclusions

• Exploiting transmit antenna correlation reduces the channel to a simpler ≈
block diagonal structure.

• This is generalized sectorization! with MU-MIMO independently in each
“sector” (group).

• We need only very coarse information on AoA and AS for the users .... DFT
pre-beamforming.

• The idea can be easily extended to 3D beamforming (introducing elevation
direction, Kronecker product structure).

• Downlink training, CSIT feedback and computation are greatly reduced
(suitable for FDD).

• JSDM lends itself naturally to spatial-domain eICIC, simple inter-cell
coordination, hybrid beamforming for mm-wave applications.
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Thank You

31


