Optimization in Communication Networks

Session Organizer:

Wei Yu
Dept. of Electrical and Computer Engineering
University of Toronto

May 15, 2012

Talks

- 2:15-2:30 Overview
- 2:30-3:00 Stephen Hanly (Macquarie University, Australia)
- New Insights in Coordinated Beamforming for Cellular Systems via Large-System Analysis
- 3:00-3:30 Mats Bengtsson (KTH)
- System-Level Utility Optimization, Revisted
- 3:30-3:45 (Coffee Break)
- 3:45-4:15 Zhi-Quan Luo (University of Minnesota)
- Base-Station Assignment and Transciever Design for Heterogeneous Networks
- 4:15-4:45 Rui Zhang (National University of Singapore)
- Cooperative Beamforming for MISO Interference Channel: Achievable Rates and Distributed Algorithms

Wireless Multicell Network

- Inter-cell interference is the fundamental limiting factor
- Coordination at the signal level: Network MIMO
- Base-stations form an giant antenna array
- Joint signal processing
- Coordination of signalling strategies:
- Coordinating power spectrum
- Coordinating beamforming
- Coordinating scheduling

- Network optimization plays a key role.

Problem Formulation

- Consider a cooperative system at signaling-strategy level.
- System setup:
- Multi-cell, sectorized, MIMO-OFDM
- Multiple antennas at both BS/MS
- Users occupy orthogonal dimensions
- Optimization objective:
- Network utility maximization

- Optimization variables:
- Scheduling: Which user in each dimension: $k=f(l, s, b, n)$.
- Beamforming: What are the transmit/receive BF: $\left(u_{l s b}^{n}, v_{l s k}^{n}\right)$.
- Power control: What are the power levels for each beam: $P_{l s b}^{n}$.

Mathematical Formulation

- For l th cell, s th sector, b th beam, k th user, nth frequency

$$
\operatorname{SINR}_{l s b k}^{n}=\frac{P_{l s b}^{n}\left|\left(u_{l s k}^{n}\right)^{T} H_{l s, l s k}^{n} v_{l s b}^{n}\right|^{2}}{\Gamma\left(\sigma^{2}+\sum_{(j, t, c) \neq(l, s, b)} P_{j t c}^{n}\left|\left(u_{l s k}^{n}\right)^{T} H_{j t, l s k}^{n} v_{j t c}^{n}\right|^{2}\right)}
$$

- Optimization problem:

$$
\begin{array}{ll}
\max & \sum_{l, s, k} \log \left(\bar{R}_{l s k}\right) \\
\text { s.t. } & R_{l s k}=\sum_{(b, n): k=f(l, s, b, n)} \log \left(1+\operatorname{SINR}_{l s b k}^{n}\right)
\end{array}
$$

- This is a challenging (non-convex) problem

Divide and Conquer

- Three key steps, thus can iterate among them:
- Power spectrum optimization
- Coordinated beamforming
- Proportionally fair scheduling
- Fixing two, the other step is a well-formulated problem.

- Heuristic
- How to best do each step?
- How well does it work?

Power Spectrum Optimization

- Fixing scheduling and beamformers, the problem becomes:

$$
\max \sum_{l s b} w_{l s b} \sum_{n} \log \left(1+\frac{P_{l s b}^{n}\left|h_{l s b, l s k}^{n}\right|^{2}}{\Gamma\left(\sigma^{2}+\sum_{(j, t, c) \neq(l, s, b)} P_{j t c}^{n}\left|h_{j t c, l s k}^{n}\right|^{2}\right)}\right)
$$

- Many different approaches proposed in the literature:
- Game-theory based approach (Ji-Huang '95 and many others)
- Geometric programming (Chiang '02, '07)
- SCALE algorithm (Papandriopoulos-Evans '06)
- Pricing based approach (Huang-Berry-Honig '06, Yu '07)
- Load-spillage (Hande-Rangan-Chiang '08)
- Binary power control (Gjendemsjo-Gesbert-Oien-Kiani '08)
- MAPEL/Polyblock optimization (Qian-Zhang-Huang '09, '10)
- Iterative function evaluation (Dahrouj-Yu '10)
- No known efficient way to circumvent nonconvexity:
- Fundamentally a difficult problem (Luo-Zhang '08).

Coordinated Beamforming

- Fundamental tool: Uplink-downlink duality

- Single-cell: (Schubert-Boche '04, Bengtsson-Ottersten '02, Visotsky-Madhow '99, Wiesel et al '06, Song et al '07)
- Multi-cell: (Rashid-Farrokhi et al '98, Dahrouj-Yu, '10)
- Use MMSE receive BF of the dual channel for transmit BF.
- Only works for power minimization for fixed SINR target.
- Iterate between rate maximization and power minimization.

Scheduling

- Choose the best set of users to serve across multiple cells.
- Full spatial multiplex: Schedule as many users as BS antennas
- Considerations:
- Load balancing
- Traffic shaping
- Interference avoidance
- Downlink:
- Interference is independent of scheduling
- Venturino-Prasad-Wang '09, Stolyar-Viswanathan '09
- Uplink:
- Discrete combinatoric optimization problem
- Difficult problem, no known optimal solution
- Single-cell solution: (Yoo-Goldsmith '06)

How Well does It Work?

- 7-cell, 3-sector/cell, 4-antenna at BS, 2 at MS, full reuse

- BS-to-BS distance $=2.8 \mathrm{~km}$ (Yu-Kwon-Shin '11)
- 100% rate improvement for the 25 th percentile user
- 50% rate improvement for the 40 th percentile user

Heterogeneous Topology

- 3-cell macro, 3 -sector/cell, 3-femto/sector, 4 tx antenna

- Coordinated BF and power control outperform constant power backoff

Can We do Better?

- What about interference alignment? (Cadambe-Jafar '08)
- For a K-user SISO interference channel coded across time or frequency dimensions.
- Degree-of-Freedom (DoF) per user is $\frac{K}{2}$
- For each user, the signal vector must not lie in the subspace spanned by interference.
- Alignment for cellular network: Suh-Ho-Tse '11,

Interference Alignment Through Linear Beamforming

- What about without symbol extension?
- Consider K-user MIMO $(M \times N)$ case
- Goal: deliver one data stream per user.
- $\mathbf{H}_{i j}$: channel between $i^{\text {th }}$ tx. and $j^{\text {th }} \mathrm{rx}$. \mathbf{v}_{j} : tx. beamformer at the $j^{\text {th }}$ tx. \mathbf{u}_{j} : rx. beamformer at the $i^{t h} \mathrm{rx}$.
- We need:

$$
\begin{array}{r}
\mathbf{u}_{j}^{T} \mathbf{H}_{i j} \mathbf{v}_{i}=0 \text { if } i \neq j \\
\mathbf{u}_{j}^{T} \mathbf{H}_{i j} \mathbf{v}_{i} \neq 0 \text { if } i=j
\end{array}
$$

- When is this possible?
- Bezout's Theorem (Yetis, et al '10)
- Counting \# of eqs. vs \# of unknowns

Interference Alignment for Cellular Networks

- Consider a 3 -sector intersection:
- M antennas/BS, N antennas/MS;
- K users per sector.
- Assuming no symbol extensions, to align interference, we need:

$$
\begin{aligned}
& \mathbf{u}_{p q}^{T} \mathbf{H}_{i p q} \mathbf{v}_{i j}=0 \text { if } i \neq p \text { or } j \neq q \\
& \mathbf{u}_{p q}^{T} \mathbf{H}_{i p q} \mathbf{v}_{i j} \neq 0 \text { if } i=p \text { and } j=q
\end{aligned}
$$

- Alignment is feasible only if: (Zhuang-Berry-Honig '12)

$$
N+M \geq \sum_{i=1}^{3} K_{i}+1
$$

- For a 3 -cell system with 4 ant. at the BS and 3 ant. at the user, only 2 users/cell can be scheduled (with no extension).
- More detailed analysis: Razaviyayn-Lyubeznik-Luo '11, Wang-Gou-Jafar '11, Bresler-Cartwright-Tse '11

What is the Right Number of Users to be Scheduled?

- Need system-level optimization to find out.
- Fewer users open up more dimensions to 'hide' interference in;
- More users can better utilize the available spatial dimensions.

- System setting:
- Downlink, 3 cell sectors
- 45 users/sector
- One stream per scheduled user
- 64 frequency tones
- M tx antennas
- N rx antennas
- Simplifying the setup:
- Round-robin scheduling
- Maximizing the sum rate
- Iterate between duality-based BF and power optimizations

Flowchart for Optimization: Full Spatial Multiplexing

- Schedule full set of users.
- Initialize with random BF, equal power.
- Use duality-based algorithm to find the BF iteratively
- Use interior-point method for account for per-BS sum power constraint

Final power, BFs

Flowchart for Optimization: What about Alignment?

- Only schedule as many users as alignment allows.
- Many sets of aligned BFs exist.
- Aligned BFs neglect direct channel.
- We further use duality-based tx-rx BF design to refine the BF design.

Final power, BFs

Computing Aligned Beamformers

- Use algorithm of Gomadam-Cadambe-Jafar '08 (see also Peters-Heath '09)
- Interference at the $j^{t h}$ user in the $i^{t h}$ cell is given by:

$$
I_{i j}=\sum_{(p, q) \neq(i, j)} \mathbf{u}_{i j}^{H} \mathbf{H}_{p i j} \mathbf{v}_{p q}
$$

- Covariance of $I_{i j}$ is given by:

$$
\operatorname{Cov}\left(I_{i j}\right)=\mathbf{u}_{i j}^{H}\left(\sum_{(p, q) \neq(i, j)} \mathbf{H}_{p i j} \mathbf{v}_{p q} \mathbf{v}_{p q}^{H} \mathbf{H}_{p i j}^{H}\right) \mathbf{u}_{i j} \triangleq \mathbf{u}_{i j}^{H} \mathbf{Q}_{i j} \mathbf{u}_{i j}
$$

- To minimize interference $I_{i j}$, set $\mathbf{u}_{i j}$ to $\nu_{L}\left(\mathbf{Q}_{i j}\right)$, where $\nu_{L}\left(\mathbf{Q}_{i j}\right)$ is the eigenvector of $\mathbf{Q}_{i j}$ with the smallest eigenvalue.
- Update all $\mathbf{u}_{i j}$; use reciprocity to update $\mathbf{v}_{i j}$ similarly.
- Repeat until convergence.

What is the Optimal Number of Users to Schedule?

- $M=4, N=3$
- 2 or 4 users/cell/tone
- power opt:
no power control per beam const.
sum power const.
- Initialization:

Random BF
Uniform power init.

- Observations:
fewer users better at smaller dist.
Crossover point shifts left

At Convergence, are BFs Aligned? Are Aligned BFs Easy to Find?

- $M=4, N=3$
- 2 or 4 users/cell/tone
- power opt:
no power control per beam const.
sum power const.
- Initialization:

Random/aligned BF
Uniform power init.

- Observations:
- aligned initialization significantly better
- aligned BF hard to find $\mathrm{w} /$ random init.
- \# users scheduled plays important role
- Similar conclusion by

Zhuang-Berry-Honig'12

Optimization of the '\# of Users to Schedule'

- $M=4, N=3$
- 2 or 4 users/cell/tone
- Initialization:

Random/aligned BFs Partially aligned BFs Uniform power init.

- power opt:
sum power const.
- BF design:
duality tx-rx BF
- Observations:
- partial align init. circumvents sch. issue
- some performance loss at higher distances

Remarks

- There are substantial benefits for system-level optimization
- for both cellular and (especially) heterogeneous networks.
- Optimization is also quite difficult:
- Nonconvexity of power optimization is difficult to circumvent;
- Beamforming is intricately connected to power control;
- Discrete nature of user scheduling is hard.
- Interference alignment opens up a new dimension
- What is the optimal number of users to schedule?
- Aligned solutions are not unique, how to identify the best one? (Schmidt-Utschick-Honig '10, Santamaria-Gonzalez-Heath-Peters '10)
- Many practical issues:
- Channel estimation and feedback.
- Rated-limited cooperation in network MIMO.

Talks

- 2:15-2:30 Overview
- 2:30-3:00 Stephen Hanly (Macquarie University, Australia)
- New Insights in Coordinated Beamforming for Cellular Systems via Large-System Analysis
- 3:00-3:30 Mats Bengtsson (KTH)
- System-Level Utility Optimization, Revisted
- 3:30-3:45 (Coffee Break)
- 3:45-4:15 Zhi-Quan Luo (University of Minnesota)
- Base-Station Assignment and Transciever Design for Heterogeneous Networks
- 4:15-4:45 Rui Zhang (National University of Singapore)
- Cooperative Beamforming for MISO Interference Channel: Achievable Rates and Distributed Algorithms

