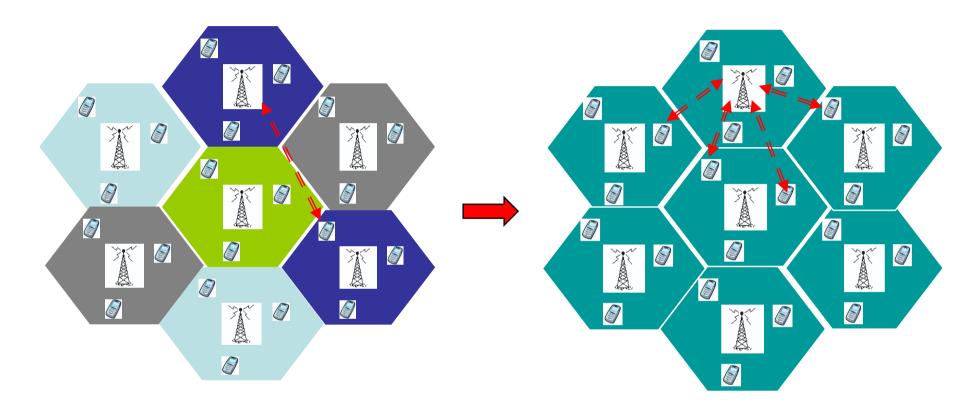
Coordinated Beamforming for MISO Interference Channels: Achievable Rate and Distributed Algorithm

Rui Zhang

National University of Singapore

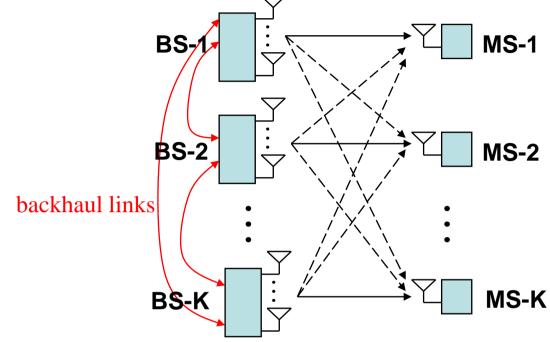
A New Look at Cellular Networks



>Future trends: universal/opportunistic frequency reuse

- □ Pros: more abundant bandwidth allocation
- □ Cons: more severe inter-cell interference (ICI)
- □ Need more sophisticated cooperative signal processing among BSs

Multi-Cell Cooperative MIMO (Downlink)



Network MIMO/CoMP (centralized approach)

Global transmit message sharing across all BSs

□ ICI utilized for coherent transmission

□ MIMO Broadcast Channel (MIMO-BC) with per-BS power constraints

Interference Coordination (decentralized approach)

Local transmit message known at each BS

□ ICI controlled to best effort

□ MIMO Interference Channel (MIMO-IC) *or* partially interfering MIMO-BC

> Other approaches

□ hybrid model, MIMO X channel, finite backhaul capacity,...

Network MIMO: Capacity Upper Bound

MIMO-BC with per-BS power constraints

- Nonlinear dirty-paper precoding (DPC)
 - □ Optimality of DPC [CaireShamai03] [ViswanathTse03] [YuCioffi04] [WeingartenSteinbergShamai06]
 - DPC region characterization (e.g., via weighted sum-rate maximization)
 - BC-MAC duality for sum-power constraint [VishwanathJindalGoldsimith03]
 - Min-Max duality for sum-/per-antenna power constraints [YuLan07]
 - Generalized BC-MAC duality for arbitrary linear transmit power constraints [ZhangZhangLiangXinPoor12]

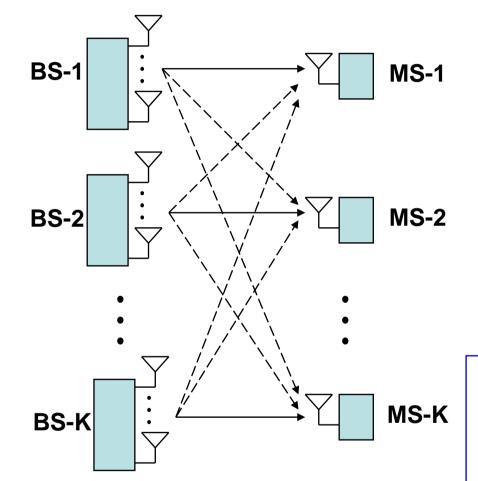
Linear zero-forcing (ZF) or block diagonalization (BD) precoding

- □ Sum-power constraint (MIMO-BC): [WongMurchLetaief03], [SpencerSwindlehurstHaardt04]
- □ Per-antenna power constraint (MISO-BC): [WieselEldarShamai08] [HuhPapadopoulosCaire09]
- General linear transmit power constraints (MIMO/MISO-BC): [Zhang10]

L. Zhang, R. Zhang, Y. C. Liang, Y. Xin, and H. V. Poor, "On the Gaussian MIMO BC-MAC duality with multiple transmit covariance constraints," *IEEE Transactions on Information Theory*, April 2012.

R. Zhang, "Cooperative multi-cell block diagonalization with per-base-station power constraints," *IEEE Journal on Selected Areas in Communications*, Dec. 2010.

Interference Coordination: MISO-IC



> Assumptions:

- one active user per cell
- \Box interference treated as noise
- □ symmetric (proper) complex Gaussian input

Signal Model:

$$y_k = h_{kk}^H x_k + \sum_{j \neq k}^K h_{jk}^H x_j + z_k, \quad k = 1, \dots, K$$

- y_k : received signal at the kth MS
- $x_k \in \mathbb{C}^{M_k imes 1}$: transmitted signal from the kth BS, $M_k \ge 1$
- $\boldsymbol{h}_{kk}^{H} \in \mathbb{C}^{1 imes M_k}$: direct-link channel for the kth BS-MS pair
- $h_{jk}^H \in \mathbb{C}^{1 \times M_j}$: cross-link channel from the *j*th BS to *k*th MS, $j \neq k$
- z_k : receiver noise at the the kth MS, $z_k \sim \mathcal{CN}(0, \sigma_k^2)$
- x_k 's are independent over k: no message sharing among BSs
- $S_k \triangleq \mathbb{E}[x_k x_k^H]$: transmit covariance matrix for the kth BS, $S_k \succeq 0$

Related Work

- Gaussian Interference Channel
 - Capacity region unknown in general
 - Best known achievability scheme: [HanKobayashi81]
 - Capacity within 1-bit: [EtkinTseWang08]
- Pragmatic Approach (interference treated as noise)
 - □ Interference alignment [Jafar *et al.*]
 - DoF optimality at high SNR
 - New ingredients: improper complex Gaussian signaling, time symbol extension, nonseparability of parallel Gaussian ICs
 - □ MISO-IC (finite-SNR, proper Gaussian input)
 - Achievable rate region characterization [JorswieckLarssonDanev08]
 - Power minimization with SINR constraints [DahroujYu10]
 - Optimality of beamforming (rank-one transmit covariance matrix) [ShangChenPoor11]
 - □ Weighted sum-rate maximization (WSRMax) via "Monotonic Optimization"
 - SISO-IC [QianZhangHuang09]
 - MISO-IC [JorswieckLarsson10] [BjornsonZhengBengtssonOttersten12]
 - □ WSRMax for MIMO-IC
 - [PetersHeath10] [RazaviyaynSanjabiLuo12]....

Pareto Optimal Rates in MISO-IC

Achievable user rate (with interference treated as noise)

$$R_k(\boldsymbol{S}_1,\ldots,\boldsymbol{S}_K) = \log\left(1 + \frac{\boldsymbol{h}_{kk}^H \boldsymbol{S}_k \boldsymbol{h}_{kk}}{\sum_{j \neq k} \boldsymbol{h}_{jk}^H \boldsymbol{S}_j \boldsymbol{h}_{jk} + \sigma_k^2}\right), \ k = 1,\ldots,K$$

Achievable rate region (prior to time sharing)

$$\mathcal{R} \triangleq \bigcup_{\{s_k\}: \operatorname{Tr}(s_k) \le P_k, \forall k} \left\{ (r_1, \dots, r_K) : 0 \le r_k \le R_k(\boldsymbol{S}_1, \dots, \boldsymbol{S}_K), k = 1, \dots, K \right\}$$

Pareto rate optimality

Definition: A rate-tuple (r_1, \ldots, r_K) is *Pareto optimal* if there is no other rate-tuple (r'_1, \ldots, r'_K) with $(r'_1, \ldots, r'_K) \ge (r_1, \ldots, r_K)$ and $(r'_1, \ldots, r'_K) \ne (r_1, \ldots, r_K)$ (the inequality is component-wise).

Weighted Sum Rate Maximization

$$(\text{WSRMax}) : \max_{\mathbf{S}_{1}, \cdots, \mathbf{S}_{K}} \sum_{k=1}^{K} w_{k} \log \left(1 + \frac{\mathbf{h}_{kk}^{H} \mathbf{S}_{k} \mathbf{h}_{kk}}{\sum_{j \neq k} \mathbf{h}_{jk}^{H} \mathbf{S}_{j} \mathbf{h}_{jk} + \sigma_{k}^{2}} \right)$$

s.t. $\text{Tr}(\mathbf{S}_{k}) \leq P_{k}, \forall k$
 $\mathbf{S}_{k} \succeq \mathbf{0}, \forall k$

Non-convex problem, cannot be solved directly by convex optimization techniques

SINR Feasibility Problem

Assuming transmit beamforming *i.e.*
$$S_k = v_k v_k^H, \forall k$$

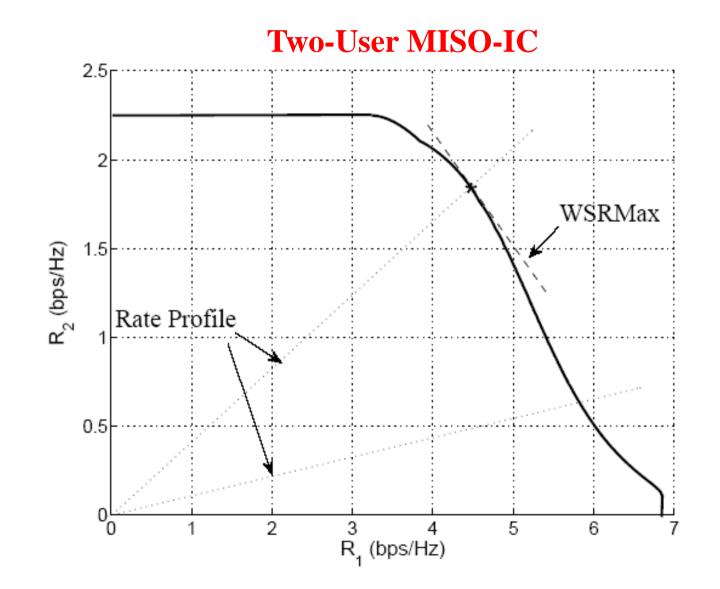
$$\begin{array}{ll} (\text{SINR} - \text{Feas.}): & \texttt{find} & \{ \boldsymbol{v}_k \} \\ & \texttt{s.t.} & \frac{1}{\bar{\gamma}_k} \| \boldsymbol{h}_{kk}^H \boldsymbol{v}_k \|^2 \geq \sum_{j \neq k} \| \boldsymbol{h}_{jk}^H \boldsymbol{v}_j \|^2 + \sigma_k^2, \quad \forall k \\ & \| \boldsymbol{v}_k \|^2 \leq P_k, \forall k \end{array}$$

Convex problem, can be solved efficiently via a convex Second Order Cone Programming (SOCP) feasibility problem

Question: Can we solve WSRMax via SINR-Feas. problem for ICs?

L. Liu, R. Zhang, and K. C. Chua, "Achieving global optimality for weighted sum-rate maximization in the K-user Gaussian interference channel with multiple antennas," *IEEE Transactions on Wireless Communications*, May 2012. (also see [BjornsonZhengBengtssonOttersten12])

Rate-Profile Approach



Sum-Rate Maximization with Rate-Profile Constraint

Given a rate-profile vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_K] \succeq 0, \sum_{k=1}^K \alpha_k = 1$

$$\begin{array}{c|c} \max_{R_{sum}} R_{sum} \\ \text{s.t.} & \log \left(1 + \gamma_k(\boldsymbol{w}_1, \dots, \boldsymbol{w}_K) \right) \geq \alpha_k R_{sum}, \quad \forall k \\ & \| \boldsymbol{w}_k \|^2 \leq P_k, \quad \forall k \end{array}$$
find $\{ \boldsymbol{w}_k \}$
s.t. $\log \left(1 + \gamma_k(\boldsymbol{w}_1, \dots, \boldsymbol{w}_K) \right) \geq \alpha_k r_{sum}, \quad \forall k \\ & \| \boldsymbol{w}_k \|^2 \leq P_k, \quad \forall k \end{array}$
SINR-Feas. Problem

Non-convex problem, but efficiently solvable via a sequence of convex SINR-Feas. Problems

R. Zhang and S. Cui, "Cooperative interference management with MISO beamforming," *IEEE Transactions on Signal Processing*, Oct. 2010.

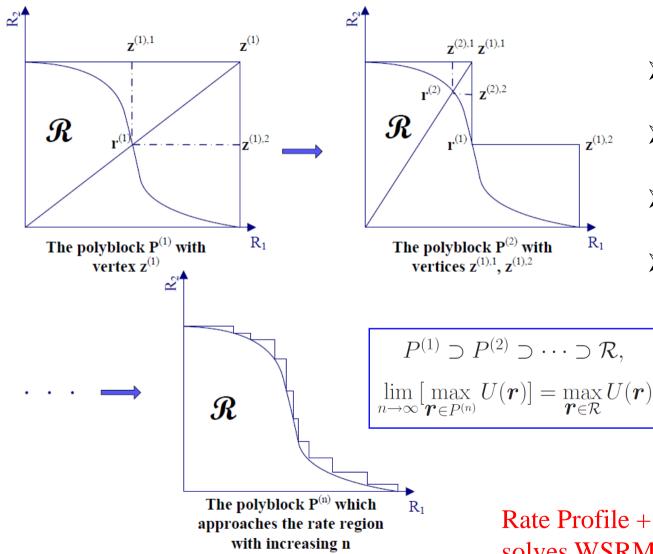
Monotonic Optimization

Key observation: maximize WSR in MISO-IC rate region directly!

$$\begin{array}{ll} (\text{WSRMax}): & \underset{\boldsymbol{r}=[R_1,\ldots,R_K]}{\text{max.}} & U(\boldsymbol{r}):=\sum_{k=1}^K \mu_k R_k \\ & \text{s.t.} & \boldsymbol{r}\in\mathcal{R} \end{array}$$

monotonic optimization problem (maximize a strictly increasing function over a "normal" set), thus solvable by *e.g.* the "outer polyblock approximation" algorithm

Outer Polyblock Approximation



- Guaranteed convergence
- ➢ Controllable accuracy

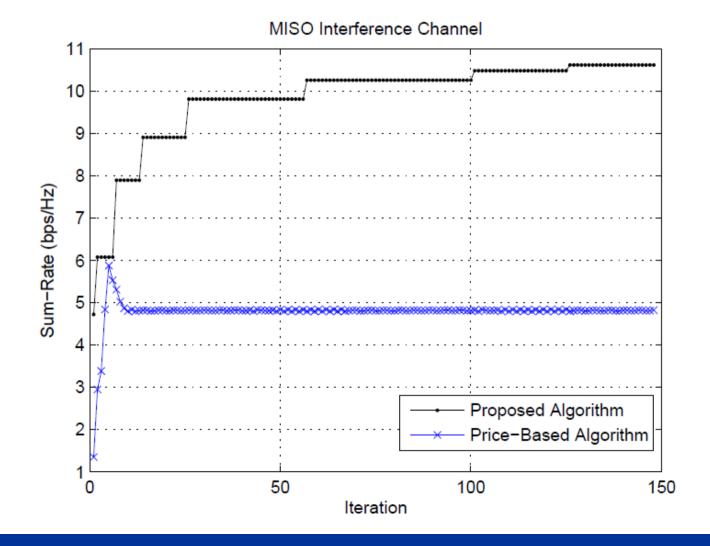
≻Complexity: ???

 Key step in each iteration: Find intersection point with Pareto boundary given a rate profile, which is solved by Sum-Rate Maximization with Rate-Profile Constraint

Rate Profile + Monotonic Optimization solves WSRMax for MISO-IC

Numerical Example

➢ Baseline scheme: "price-based" algorithm [Schmidt *et al.*09]
 ➢ MISO-IC: M_k=2, K=4, *i.i.d.* Rayleigh fading, SNR_k=3, w_k=1



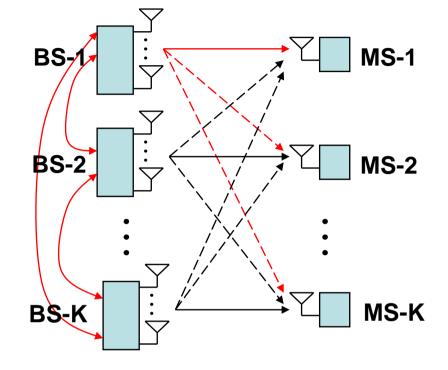
Recap

- Pareto rate characterization for Gaussian MISO-IC
 - non-convex problem in general
 - rate maximization with user fairness: rate profile vs. WSRMax
 - rate-profile: polynomial complexity, scalable with # of users
 - WSRMax: unknown complexity , non-scalable with # of users
 - similar results extendible to SISO-IC or SIMO-IC, but not MIMO-IC

➢ Developed a new framework for *non-convex* utility optimization in multiuser networks (with conflict interests) based on rate profile and monotonic optimization, provided

- problem size not so large
- finding intersection points with Pareto boundary is efficiently solvable

Distributed Beamforming for MISO-IC

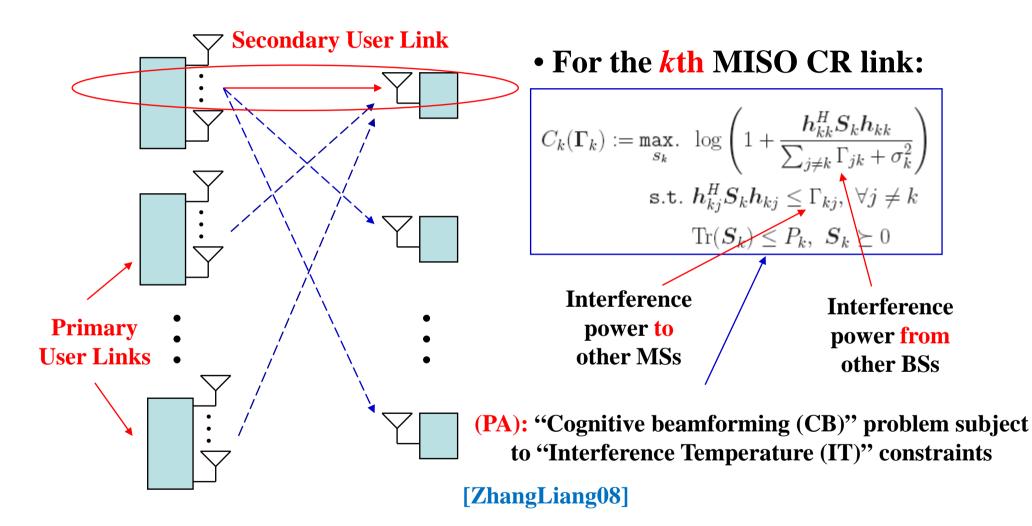


- Distributed Beamforming
 - Iow-rate information exchange across BSs
 - only "local" channel knowledge available at each BS

Question: Can we archive distributed (Pareto rate) optimal beamforming?

R. Zhang and S. Cui, "Cooperative interference management with MISO beamforming," *IEEE Transactions on Signal Processing*, Oct. 2010.

Exploiting a Relationship between MISO-IC and MISO Cognitive Radio (CR) Channel



R. Zhang and Y. C. Liang, "Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks," *IEEE Journal of Selected Topics in Signal Processing*, 2008.

Optimal Cognitive Beamforming (CB)

Theorem: The optimal solution for S_k in (PA) is *rank-one*, i.e., $S_k = w_k w_k^H$, and

$$\boldsymbol{w}_{k} = \left(\sum_{j \neq k} \lambda_{kj} \boldsymbol{h}_{kj} \boldsymbol{h}_{kj}^{H} + \lambda_{kk} \boldsymbol{I}\right)^{-1} \boldsymbol{h}_{kk} \sqrt{p_{k}}$$

where λ_{kj} , $j \neq k$, and λ_{kk} are non-negative constants (solutions for the dual problem of (PA)); and p_k is given by

$$p_{k} = \left(\frac{1}{\ln 2} - \frac{\sum_{j \neq k} \Gamma_{jk} + \sigma_{k}^{2}}{\|\boldsymbol{A}_{k} \boldsymbol{h}_{kk}\|^{2}}\right)^{+} \frac{1}{\|\boldsymbol{A}_{k} \boldsymbol{h}_{kk}\|^{2}}$$

where $\boldsymbol{A}_{k} \triangleq \left(\sum_{j \neq k} \lambda_{kj} \boldsymbol{h}_{kj} \boldsymbol{h}_{kj}^{H} + \lambda_{kk} \boldsymbol{I}\right)^{-1/2}$ and $(x)^{+} \triangleq \max(0, x)$.

A semi-closed-form solution efficiently solvable by an iterative inner-outer-loop algorithm

Interference Temperature (IT) Approach to Characterize MISO-IC Pareto Boundary

Proposition: For any rate-tuple (R_1, \ldots, R_K) on the Pareto boundary of the MISO-IC rate region, which is achievable with a set of transmit covariance matrices, S_1, \ldots, S_K , there is a corresponding interferencepower/interference-temperature constraint vector, $\Gamma \ge 0$, with $\Gamma_{kj} = h_{kj}^H S_k h_{kj}, \forall j \neq k, j \in \{1, \ldots, K\}$, and $k \in \{1, \ldots, K\}$, such that $R_k = C_k(\Gamma_k), \forall k$, and S_k is the optimal solution of (PA) for the given k.

□A new parametrical characterization of MISO-IC Pareto boundary in terms of BSs' mutual IT levels, which constitute a lower-dimensional manifold than transmit covariance matrices

Optimality of beamforming for MISO-IC is proved (see an alternative proof in [ShangChenPoor11])

Necessary Condition of Pareto Optimality

Theorem: For an arbitrarily chosen $\Gamma = [\Gamma_1, \ldots, \Gamma_K] \ge 0$, if the optimal rate values for all k's, $C_k(\Gamma_k)$'s, are Pareto-optimal on the boundary of the MISO-IC rate region, then for any pair of $(i, j), i \in \{1, \ldots, K\}, j \in \{1, \ldots, K\}$, and $i \ne j$, it must hold that $|\mathbf{D}_{ij}| = 0$, where $\mathbf{D}_{ij} = \begin{bmatrix} \frac{\partial C_i(\Gamma_i)}{\partial \Gamma_{ij}} & \frac{\partial C_i(\Gamma_i)}{\partial \Gamma_{ji}} \\ \frac{\partial C_j(\Gamma_j)}{\partial \Gamma_{ij}} & \frac{\partial C_j(\Gamma_j)}{\partial \Gamma_{ji}} \end{bmatrix} := \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$

where

$$\begin{aligned} \frac{\partial C_i \left(\boldsymbol{\Gamma}_i \right)}{\partial \Gamma_{ij}} &= \lambda_{ij} \\ \frac{\partial C_i \left(\boldsymbol{\Gamma}_i \right)}{\partial \Gamma_{ji}} &= \frac{-\boldsymbol{h}_{ii}^H \boldsymbol{S}_i^{\star} \boldsymbol{h}_{ii}}{\ln 2 (\sum_{l \neq i} \Gamma_{li} + \sigma_i^2) (\sum_{l \neq i} \Gamma_{li} + \sigma_i^2 + \boldsymbol{h}_{ii}^H \boldsymbol{S}_i^{\star} \boldsymbol{h}_{ii})} \end{aligned}$$

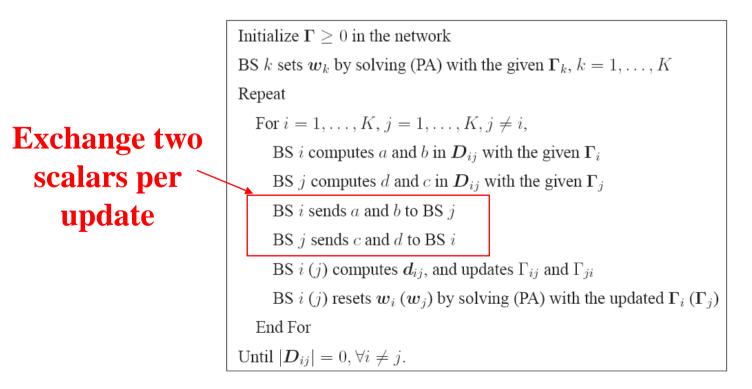
Distributed Beamforming based on CB and "Active IT Control"

BS pair-wise IT update:

where
$$d_{ij} = \operatorname{sign}(ad - bc) \cdot [\alpha_{ij}d - b, a - \alpha_{ij}c]^T$$
 step size

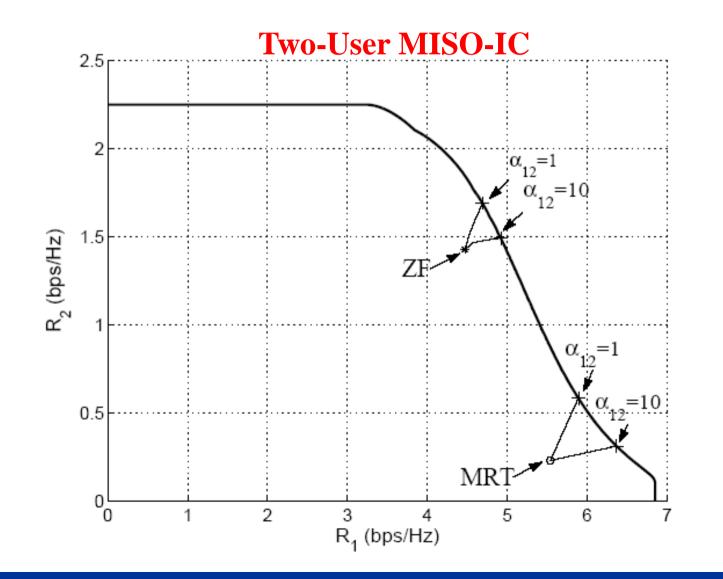
$$\begin{aligned} & [\Gamma_{ij}, \Gamma_{ji}]^T \leftarrow [\Gamma_{ij}, \Gamma_{ji}]^T + \delta_{ij} \cdot d_{ij} \\ & \text{fairness control} \end{aligned}$$

Distributed coordinated beamforming for MISO-IC:



Numerical Example

►MISO-IC: $M_1 = M_2 = 3$, K = 2, *i.i.d.* Rayleigh fading, $SNR_1 = 5$, $SNR_2 = 1$



Concluding Remark

> Transmit optimization for MISO-IC

- WSRMax characterization (rate profile + monotonic optimization)
- optimal distributed beamforming (cognitive beamforming + active IT control)

> Next Step: improper Gaussian signaling (submitted to Asilomar 2012)

$$R_{r} = \underbrace{\log(1 + \frac{|h_{rr}|^{2}C_{x_{r}}}{\sigma^{2} + |h_{r\overline{r}}|^{2}C_{x_{\overline{r}}}})}_{R_{r}^{\text{proper}}(C_{x_{1}}, C_{x_{2}})} + \frac{1}{2} \underbrace{\log\frac{1 - C_{y_{r}}^{-2}|\widetilde{C}_{y_{r}}|^{2}}{1 - C_{s_{r}}^{-2}|\widetilde{C}_{s_{r}}|^{2}}}.$$

