# Discrete consensus in wireless networks 

Anand D. Sarwate and Tara Javidi<br>Information Theory and Applications Center University of California, San Diego

12 May 2010


## Applications for consensus algorithms


06.27 .08

O6.27.08


## Applications for consensus algorithms


06.27 .08

Ebou. mixn


Consensus is a fundamental task in distributed systems:

## Applications for consensus algorithms


06.27 .08

D6.0. M.


Consensus is a fundamental task in distributed systems:

- Coordination and control in robotic networks


## Applications for consensus algorithms


06.27 .08

D6.0. M.


Consensus is a fundamental task in distributed systems:

- Coordination and control in robotic networks
- Load balancing and calibration


## Applications for consensus algorithms



Consensus is a fundamental task in distributed systems:

- Coordination and control in robotic networks
- Load balancing and calibration
- Primitive for distributed computation


## Consensus protocols : goals


06.27.08

कtay. Mixas

http://www.flickr.com/photos/skreuzer/354316053/

## Consensus protocols : goals


06.27.08

कtay. Mixas

http://www.flickr.com/photos/skreuzer/354316053/

## Consensus protocols : goals



- Discrete computation and communication : reality is digital.


## Consensus protocols : goals



- Discrete computation and communication : reality is digital.
- Low complexity : can piggyback in existing packet structure.


## Consensus protocols : goals



- Discrete computation and communication : reality is digital.
- Low complexity : can piggyback in existing packet structure.
- Fast : should not pay "too much" for distributed implementation.


## The consensus problem



At a high level, consensus is distributed averaging:

## The consensus problem



At a high level, consensus is distributed averaging:

- $n$ nodes in a network with initial values $x_{i}(0)$ for $i=1,2, \ldots n$


## The consensus problem



At a high level, consensus is distributed averaging:

- $n$ nodes in a network with initial values $x_{i}(0)$ for $i=1,2, \ldots n$


## The consensus problem



At a high level, consensus is distributed averaging:

- $n$ nodes in a network with initial values $x_{i}(0)$ for $i=1,2, \ldots n$


## The consensus problem



At a high level, consensus is distributed averaging:

- $n$ nodes in a network with initial values $x_{i}(0)$ for $i=1,2, \ldots n$
- Pass messages (either synchronously or asynchronously)


## The consensus problem



At a high level, consensus is distributed averaging:

- $n$ nodes in a network with initial values $x_{i}(0)$ for $i=1,2, \ldots n$
- Pass messages (either synchronously or asynchronously)


## The consensus problem



At a high level, consensus is distributed averaging:

- $n$ nodes in a network with initial values $x_{i}(0)$ for $i=1,2, \ldots n$
- Pass messages (either synchronously or asynchronously)
- Goal is to compute average $x_{\text {ave }}=\frac{1}{n} \sum x_{i}(0)$


## The consensus problem



At a high level, consensus is distributed averaging:

- $n$ nodes in a network with initial values $x_{i}(0)$ for $i=1,2, \ldots n$
- Pass messages (either synchronously or asynchronously)
- Goal is to compute average $x_{\text {ave }}=\frac{1}{n} \sum x_{i}(0)$


## Typical assumptions are unrealistic



Existing work doesn't "look practical":

## Typical assumptions are unrealistic



Existing work doesn't "look practical":

- Transmit and receive real numbers


## Typical assumptions are unrealistic



Existing work doesn't "look practical":

- Transmit and receive real numbers
- Consensus is the only goal of the network


## Typical assumptions are unrealistic



Existing work doesn't "look practical":

- Transmit and receive real numbers
- Consensus is the only goal of the network
- Asymptotics and universality


## This talk : quantizing communication and computation



## This talk : quantizing communication and computation



- Discrete computation and communication works fine.


## This talk : quantizing communication and computation



- Discrete computation and communication works fine.
- Theoretical guarantees on performance.


## This talk : quantizing communication and computation



- Discrete computation and communication works fine.
- Theoretical guarantees on performance.
- Possible metric for optimizing parameters.


## Quantizing communication and computation

Consensus algorithms: De Groot ('74), Chatterjee and Seneta ('77). Tsitsiklis ('84) Lots of recent work on quantizing communication:

Xiao et al. '07<br>Yildiz and Scaglione '08<br>Aysal et al. '07<br>Kar and Moura '10<br>Nedić et al. '09<br>Carli et al. '10

noisy messages
quantization noise probabilistic quantization dithered quantization universal bounds adaptive quantization

## The model



## The model



- $n$ nodes in a fixed static graph


## The model



- $n$ nodes in a fixed static graph
- Node $i$ starts with initial values $x_{i}(0)$ for $i=1,2, \ldots n$


## The model



- $n$ nodes in a fixed static graph
- Node $i$ starts with initial values $x_{i}(0)$ for $i=1,2, \ldots n$
- Assume $x_{i}(0) \in[0,1]$, uniformly quantized to $R+R_{0}$ bits


## The model



- $n$ nodes in a fixed static graph
- Node $i$ starts with initial values $x_{i}(0)$ for $i=1,2, \ldots n$
- Assume $x_{i}(0) \in[0,1]$, uniformly quantized to $R+R_{0}$ bits
- Goal is to compute $x_{\text {ave }}=\frac{1}{n} \sum x_{i}(0)$


## Quantized communication



## Quantized communication



- At each time $t$ all neighbors $(i, j)$ exchange messages


## Quantized communication



- At each time $t$ all neighbors $(i, j)$ exchange messages
- Messages $i \rightarrow j$ and $j \rightarrow i$ must take no more than $R$ bits


## Quantized communication



- At each time $t$ all neighbors $(i, j)$ exchange messages
- Messages $i \rightarrow j$ and $j \rightarrow i$ must take no more than $R$ bits
- Update $x_{i}(t)$ as a function of $x_{i}(t-1)$ and messages $\{j \rightarrow i\}$


## Defining consensus



Consensus is when all estimates end up in the same quantization bin.

## Defining consensus



Consensus is when all estimates end up in the same quantization bin.

## Defining consensus



Consensus is when all estimates end up in the same quantization bin.

## Defining consensus



Consensus is when all estimates end up in the same quantization bin. Consensus at $R$ bit resolution.

## Defining consensus



Consensus is when all estimates end up in the same quantization bin. Consensus at $R$ bit resolution.

## Defining consensus



Consensus is when all estimates end up in the same quantization bin. Consensus at $R$ bit resolution.

## Defining consensus



Consensus is when all estimates end up in the same quantization bin. Consensus at $R$ bit resolution.

## A simple protocol



- Assume entries of $W$ are also quantized to $R_{0}$ bits.
- Iterations preserve sum $\sum_{i} x_{i}(t)$.


## So how well does it work?

## So how well does it work?

## Random topology, 49 nodes, good connectivity



## So how well does it work?

Random topology, 49 nodes, poor connectivity


## So how well does it work?

## Grid, 100 nodes



## Convergence results



Main result : If $W$ is doubly stochastic, symmetric, and $W_{i i}>0$ then the algorithm converges to consensus.

## Convergence ideas

## 

$$
\begin{aligned}
\mathbf{x}(t+1) & =(\mathbf{x}(t)-\hat{\mathbf{x}}(t))+W \hat{\mathbf{x}}(t) \\
& =\mathbf{e}(t)+W \hat{\mathbf{x}}(t) \\
\left(\mathbf{x}(t+1)-x_{\mathrm{ave}} \mathbf{1}\right) & =\left(\mathbf{x}(t)-x_{\mathrm{ave}} \mathbf{1}\right)+(W-I) \mathbf{e}(t) .
\end{aligned}
$$

## Convergence ideas



$$
\begin{aligned}
\mathbf{x}(t+1) & =(\mathbf{x}(t)-\hat{\mathbf{x}}(t))+W \hat{\mathbf{x}}(t) \\
& =\mathbf{e}(t)+W \hat{\mathbf{x}}(t) \\
\left(\mathbf{x}(t+1)-x_{\mathrm{ave}} \mathbf{1}\right) & =\left(\mathbf{x}(t)-x_{\mathrm{ave}} \mathbf{1}\right)+(W-I) \mathbf{e}(t) .
\end{aligned}
$$

- $W$ doubly stochastic, symmetric $\rightarrow$ reversible MC with $\pi$ uniform


## Convergence ideas



$$
\begin{aligned}
\mathbf{x}(t+1) & =(\mathbf{x}(t)-\hat{\mathbf{x}}(t))+W \hat{\mathbf{x}}(t) \\
& =\mathbf{e}(t)+W \hat{\mathbf{x}}(t) \\
\left(\mathbf{x}(t+1)-x_{\mathrm{ave}} \mathbf{1}\right) & =\left(\mathbf{x}(t)-x_{\mathrm{ave}} \mathbf{1}\right)+(W-I) \mathbf{e}(t) .
\end{aligned}
$$

- $W$ doubly stochastic, symmetric $\rightarrow$ reversible MC with $\pi$ uniform
- Self-transitions ensure $\|(W-I) \mathbf{e}(t)\|_{1}$ decreases.


## Convergence ideas

## Time to converge vs. size of grid



## The rate of convergence

$$
\begin{aligned}
\mathbf{x}(t) & =W \mathbf{x}(t-1)+(I-W) \mathbf{e}(t-1) \\
& =W^{t} \mathbf{x}(0)+\sum_{s=1}^{t}\left(W^{s-1}-W^{s}\right) \mathbf{e}(t-s)
\end{aligned}
$$

## The rate of convergence

$$
\begin{aligned}
\mathbf{x}(t) & =W \mathbf{x}(t-1)+(I-W) \mathbf{e}(t-1) \\
& =W^{t} \mathbf{x}(0)+\sum_{s=1}^{t}\left(W^{s-1}-W^{s}\right) \mathbf{e}(t-s) .
\end{aligned}
$$

- First term $W^{t} \mathbf{x}(0) \rightarrow x_{\text {ave }} \mathbf{1}$ by standard MC results.


## The rate of convergence

$$
\begin{aligned}
\mathbf{x}(t) & =W \mathbf{x}(t-1)+(I-W) \mathbf{e}(t-1) \\
& =W^{t} \mathbf{x}(0)+\sum_{s=1}^{t}\left(W^{s-1}-W^{s}\right) \mathbf{e}(t-s)
\end{aligned}
$$

- First term $W^{t} \mathbf{x}(0) \rightarrow x_{\text {ave }} \mathbf{1}$ by standard MC results.
- Second term is not quite a telescoping sum...


## Limiting error term

$$
\mathbf{E}(t)=\sum_{s=1}^{t}\left(W^{s-1}-W^{s}\right) \mathbf{e}(t-s)
$$

## Limiting error term

$$
\mathbf{E}(t)=\sum_{s=1}^{t}\left(W^{s-1}-W^{s}\right) \mathbf{e}(t-s)
$$

- $\left|E_{i}(t)\right|$ is a convex function of past errors.


## Limiting error term

$$
\mathbf{E}(t)=\sum_{s=1}^{t}\left(W^{s-1}-W^{s}\right) \mathbf{e}(t-s)
$$

- $\left|E_{i}(t)\right|$ is a convex function of past errors.
- Upper bound by maximizing over $\left\{\mathbf{e}(t-s) \in\left\{-\frac{\Delta}{2}, \frac{\Delta}{2}\right\}\right\}$


## Limiting error term

$$
\mathbf{E}(t)=\sum_{s=1}^{t}\left(W^{s-1}-W^{s}\right) \mathbf{e}(t-s)
$$

- $\left|E_{i}(t)\right|$ is a convex function of past errors.
- Upper bound by maximizing over $\left\{\mathbf{e}(t-s) \in\left\{-\frac{\Delta}{2}, \frac{\Delta}{2}\right\}\right\}$

$$
\Delta \sum_{s=1}^{t}\left\|W^{s-1}(i, \cdot)-W^{s}(i, \cdot)\right\|_{T V}
$$

## Limiting error term

$$
\mathbf{E}(t)=\sum_{s=1}^{t}\left(W^{s-1}-W^{s}\right) \mathbf{e}(t-s)
$$

- $\left|E_{i}(t)\right|$ is a convex function of past errors.
- Upper bound by maximizing over $\left\{\mathbf{e}(t-s) \in\left\{-\frac{\Delta}{2}, \frac{\Delta}{2}\right\}\right\}$

$$
\Delta \sum_{s=1}^{t}\left\|W^{s-1}(i, \cdot)-W^{s}(i, \cdot)\right\|_{T V}
$$

Game is now to find good bounds on one-step change...

A generic upper bound for reversible chains

## A generic upper bound for reversible chains

For reversible Markov chains,

$$
\left\|\delta_{i}^{T} W^{s}-\pi^{T}\right\|_{T V}^{2} \leq \frac{W^{2}(i, i)}{\pi(i)} \lambda_{2}(W)^{2 s-2},
$$

## A generic upper bound for reversible chains

For reversible Markov chains,

$$
\left\|\delta_{i}^{T} W^{s}-\pi^{T}\right\|_{T V}^{2} \leq \frac{W^{2}(i, i)}{\pi(i)} \lambda_{2}(W)^{2 s-2}
$$

Applying it gives

$$
\left|E_{i}(t)\right| \leq c \sqrt{n} \Delta
$$

## A generic upper bound for reversible chains

For reversible Markov chains,

$$
\left\|\delta_{i}^{T} W^{s}-\pi^{T}\right\|_{T V}^{2} \leq \frac{W^{2}(i, i)}{\pi(i)} \lambda_{2}(W)^{2 s-2}
$$

Applying it gives

$$
\left|E_{i}(t)\right| \leq c \sqrt{n} \Delta
$$

Says error decay rate is exponential only to the level of $\sqrt{n} \Delta$.

## A generic upper bound for reversible chains

For reversible Markov chains,

$$
\left\|\delta_{i}^{T} W^{s}-\pi^{T}\right\|_{T V}^{2} \leq \frac{W^{2}(i, i)}{\pi(i)} \lambda_{2}(W)^{2 s-2}
$$

Applying it gives

$$
\left|E_{i}(t)\right| \leq c \sqrt{n} \Delta
$$

Says error decay rate is exponential only to the level of $\sqrt{n} \Delta$.!!!

Well-connected networks
(it) Calit 2

## Well-connected networks

If graph is "well-connected", then:

$$
\left\|\mathbf{a} W^{k}-\mathbf{b} W^{k}\right\|_{T V} \leq\|\mathbf{a}-\mathbf{b}\|_{T V} d(W)^{k} .
$$

where

$$
d(W)=\sup _{i, j}\|W(i, \cdot)-W(j, \cdot)\|_{T V}
$$

## Well-connected networks

If graph is "well-connected", then:

$$
\left\|\mathbf{a} W^{k}-\mathbf{b} W^{k}\right\|_{T V} \leq\|\mathbf{a}-\mathbf{b}\|_{T V} d(W)^{k} .
$$

where

$$
d(W)=\sup _{i, j}\|W(i, \cdot)-W(j, \cdot)\|_{T V}
$$

Gives

$$
\left|E_{i}(t)\right|=c \Delta
$$

Rate is slower than $\lambda_{2}(W)$.

## A closer look at the error term



$$
\left\|W^{s-1}(i, \cdot)-W^{s}(i, \cdot)\right\|_{T V}
$$

## A closer look at the error term



$$
\left\|W^{s-1}(i, \cdot)-W^{s}(i, \cdot)\right\|_{T V}
$$

- If chain mixes slowly, each step is small.


## A closer look at the error term



$$
\left\|W^{s-1}(i, \cdot)-W^{s}(i, \cdot)\right\|_{T V}
$$

- If chain mixes slowly, each step is small.
- If chain mixes quickly, sum of steps is small.

Approaches to refining the bound


## Approaches to refining the bound



- We know that $\left\|W^{s-1}(i, \cdot)-W^{s}(i, \cdot)\right\|_{T V}$ is given by the best coupling time.


## Approaches to refining the bound



- We know that $\left\|W^{s-1}(i, \cdot)-W^{s}(i, \cdot)\right\|_{T V}$ is given by the best coupling time.
- Construct a coupling that better matches the observed behavior.


## Approaches to refining the bound



- We know that $\left\|W^{s-1}(i, \cdot)-W^{s}(i, \cdot)\right\|_{T V}$ is given by the best coupling time.
- Construct a coupling that better matches the observed behavior.
- Possible connections to other interesting criteria?


## Extensions to gossip

©

(5)

(3)
(2)
(3)
©
(3)

(8)
(ㄱ)
(5)
©
(ㄱ)

## Extensions to gossip



- Lots of work on gossip (asynchronous iterations)


## Extensions to gossip



- Lots of work on gossip (asynchronous iterations)


## Extensions to gossip



- Lots of work on gossip (asynchronous iterations)


## Extensions to gossip



- Lots of work on gossip (asynchronous iterations)


## Extensions to gossip



- Lots of work on gossip (asynchronous iterations)


## Extensions to gossip



- Lots of work on gossip (asynchronous iterations)


## Extensions to gossip



- Lots of work on gossip (asynchronous iterations)
- Kashyap et al. ('07), Carli et al. ('10), Zhu and Martínez ('10), Lavaei and Murray ('10)...


## Extensions to gossip



- Lots of work on gossip (asynchronous iterations)
- Kashyap et al. ('07), Carli et al. ('10), Zhu and Martínez ('10), Lavaei and Murray ('10)...
- Should be able to prove similar results.


## Conclusions and cbservations



- Quantization is important for practical applications.
- Average consensus to within reasonable resolution can be fast.
- Overhead can be reduced by piggybacking on existing traffic.

Next step: implement e.g. in a sensornet testbed..

## Thanks!


(it $t^{\prime}$ Calit2

