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Applications for consensus algorithms

Consensus is a fundamental task in distributed systems:

• Coordination and control in robotic networks

• Load balancing and calibration

• Primitive for distributed computation

http://www.flickr.com/photos/skreuzer/354316053/
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Consensus protocols : goals

• Discrete computation and communication : reality is digital.

• Low complexity : can piggyback in existing packet structure.

• Fast : should not pay “too much” for distributed implementation.
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The consensus problem

At a high level, consensus is distributed averaging:

• n nodes in a network with initial values xi(0) for i = 1, 2, . . . n
• Pass messages (either synchronously or asynchronously)

• Goal is to compute average xave = 1
n

∑
xi(0)
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Typical assumptions are unrealistic
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Existing work doesn’t “look practical”:

• Transmit and receive real numbers

• Consensus is the only goal of the network

• Asymptotics and universality
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This talk : quantizing communication and computation
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• Discrete computation and communication works fine.

• Theoretical guarantees on performance.

• Possible metric for optimizing parameters.
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Quantizing communication and computation

Consensus algorithms : De Groot (’74), Chatterjee and Seneta (’77). Tsitsiklis (’84)

Lots of recent work on quantizing communication:

Xiao et al. ’07 noisy messages
Yildiz and Scaglione ’08 quantization noise
Aysal et al. ’07 probabilistic quantization
Kar and Moura ’10 dithered quantization
Nedić et al. ’09 universal bounds
Carli et al. ’10 adaptive quantization
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The model
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• n nodes in a fixed static graph

• Node i starts with initial values xi(0) for i = 1, 2, . . . n
• Assume xi(0) ∈ [0, 1], uniformly quantized to R+R0 bits

• Goal is to compute xave = 1
n

∑
xi(0)
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Quantized communication
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• At each time t all neighbors (i, j) exchange messages

• Messages i→ j and j → i must take no more than R bits

• Update xi(t) as a function of xi(t− 1) and messages {j → i}
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Defining consensus

k

2R

k + 1
2R

Consensus is when all estimates end up in the same quantization bin.
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A simple protocol

W1,i

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

xi(t) W2,i

W3,i
W4,i

W5,i

xi(t+ 1) = xi(t) +
∑
j∈Ni

Wij(x̂j(t)− x̂i(t)).

• Assume entries of W are also quantized to R0 bits.

• Iterations preserve sum
∑

i xi(t).
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So how well does it work?
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So how well does it work?

Grid, 100 nodes
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Convergence results

k

2R

k + 1
2R

k

2R

k + 1
2R

Main result : If W is doubly stochastic, symmetric, and Wii > 0
then the algorithm converges to consensus.
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Convergence ideas

k

2R

k + 1
2R

x(t+ 1) = (x(t)− x̂(t)) +W x̂(t)
= e(t) +W x̂(t)

(x(t+ 1)− xave1) = (x(t)− xave1) + (W − I)e(t).

• W doubly stochastic, symmetric → reversible MC with π uniform

• Self-transitions ensure ‖(W − I)e(t)‖1 decreases.
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Convergence ideas

Time to converge vs. size of grid

Sarwate/Javidi



CTW 2010 > Analysis 16 / 24

The rate of convergence

x(t) = Wx(t− 1) + (I −W )e(t− 1)

= W tx(0) +
t∑

s=1

(W s−1 −W s)e(t− s).

• First term W tx(0)→ xave1 by standard MC results.

• Second term is not quite a telescoping sum...
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Limiting error term

E(t) =
t∑

s=1

(W s−1 −W s)e(t− s).

• |Ei(t)| is a convex function of past errors.

• Upper bound by maximizing over {e(t− s) ∈ {−∆
2 ,

∆
2 }}

∆
t∑

s=1

∥∥W s−1(i, ·)−W s(i, ·)
∥∥

TV

Game is now to find good bounds on one-step change...
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A generic upper bound for reversible chains

For reversible Markov chains,

∥∥δT
i W

s − πT
∥∥2

TV
≤ W 2(i, i)

π(i)
λ2(W )2s−2,

Applying it gives

|Ei(t)| ≤ c
√
n∆

Says error decay rate is exponential only to the level of
√
n∆. !!!
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Well-connected networks

If graph is “well-connected”, then:∥∥∥aW k − bW k
∥∥∥

TV
≤ ‖a− b‖TV d(W )k.

where

d(W ) = sup
i,j
‖W (i, ·)−W (j, ·)‖TV

Gives

|Ei(t)| = c∆.

Rate is slower than λ2(W ).
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A closer look at the error term

t + 1t

∥∥W s−1(i, ·)−W s(i, ·)
∥∥

TV

• If chain mixes slowly, each step is small.

• If chain mixes quickly, sum of steps is small.
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Approaches to refining the bound

t + 1t

• We know that
∥∥W s−1(i, ·)−W s(i, ·)

∥∥
TV

is given by the best
coupling time.

• Construct a coupling that better matches the observed behavior.

• Possible connections to other interesting criteria?
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Extensions to gossip
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• Lots of work on gossip (asynchronous iterations)

• Kashyap et al. (’07), Carli et al. (’10), Zhu and Mart́ınez (’10),
Lavaei and Murray (’10)...

• Should be able to prove similar results.
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Conclusions and cbservations

• Quantization is important for practical applications.

• Average consensus to within reasonable resolution can be fast.

• Overhead can be reduced by piggybacking on existing traffic.

Next step: implement e.g. in a sensornet testbed..
Sarwate/Javidi
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Thanks!
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	Preliminaries
	Model
	Analysis
	Extensions

