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Applications for consensus algorithms

Consensus is a fundamental task in distributed systems:
e Coordination and control in robotic networks
e Load balancing and calibration
e Primitive for distributed computation

http://www.flickr.com/photos/skreuzer/354316053/
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Consensus protocols : goals
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Consensus protocols : goals

e Discrete computation and communication : reality is digital.
e Low complexity : can piggyback in existing packet structure.

e Fast : should not pay “too much” for distributed implementation.

http://www.flickr.com/photos/skreuzer/364316053/
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The consensus problem
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At a high level, consensus is distributed averaging:
e n nodes in a network with initial values x;(0) fori =1,2,...n
e Pass messages (either synchronously or asynchronously)

e Goal is to compute average Taye = %Z x;(0)
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Typical assumptions are unrealistic

Existing work doesn't “look practical”:
e Transmit and receive real numbers
e Consensus is the only goal of the network

e Asymptotics and universality
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This talk : quantizing communication and computation

e Discrete computation and communication works fine.
e Theoretical guarantees on performance.

e Possible metric for optimizing parameters.
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Quantizing communication and computation

Consensus algorithms : De Groot ('74), Chatterjee and Seneta ('77). Tsitsiklis ('84)
Lots of recent work on quantizing communication:

Xiao et al. '07 noisy messages
Yildiz and Scaglione '08 quantization noise
Aysal et al. '07 probabilistic quantization
Kar and Moura '10 dithered quantization
Nedi¢ et al. '09 universal bounds
Carli et al. "10 adaptive quantization

& D¢ qji



CTW 2010 > Model 8 /24

The model

"?’Calit




CTW 2010 > Model 8 /24

The model

e n nodes in a fixed static graph

‘it‘)calit Sarwate/Javidi



CTW 2010 > Model 8 /24

The model

e n nodes in a fixed static graph

e Node 7 starts with initial values z;(0) for i =1,2,...n

‘it‘)calit Sarwate/Javidi



CTW 2010 > Model 8 /24

The model

e n nodes in a fixed static graph
e Node 7 starts with initial values z;(0) for i =1,2,...n
e Assume z;(0) € [0, 1], uniformly quantized to R + Rq bits

‘it‘)calit Sarwate/Javidi



CTW 2010 > Model 8 /24
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e n nodes in a fixed static graph
e Node 7 starts with initial values z;(0) for i =1,2,...n
e Assume z;(0) € [0, 1], uniformly quantized to R + Rq bits

e Goal is to compute Zaye = %Z x;(0)
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Quantized communication

e At each time ¢ all neighbors (i, j) exchange messages
e Messages ¢ — j and j — ¢ must take no more than R bits

e Update z;(t) as a function of z;(t — 1) and messages {j — i}
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Defining consensus
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Consensus is when all estimates end up in the same quantization bin.
Consensus at R bit resolution.
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A simple protocol

zi(t+1) + > Wi (@5(t) — 24(2)).

JEN;

e Assume entries of W are also quantized to Ry bits.
e lterations preserve sum . z;(t).
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So how well does it work?

Grid, 100 nodes
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Convergence results
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Main result : If W is doubly stochastic, symmetric, and W;; > 0
then the algorithm converges to consensus.
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Convergence ideas

*_' | | | | | | | | |

] ! | ! | ! ] ! |.-F.-I_
k k+1
2R 2R

(x(t 4+ 1) = zavel) = (x(t) — Tavel) + (W — Ie(t).

e IV doubly stochastic, symmetric — reversible MC with 7 uniform

e Self-transitions ensure ||(W — I)e(t)||; decreases.
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Convergence ideas

Time to converge vs. size of grid
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The rate of convergence

x(t) = Wx(t—1)+ (I —We(t — 1)
= W'x(0) + > (W = W*)e(t — s).
s=1
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x(t) = Wx(t—1)+ (I —We(t — 1)
= W'x(0) + > (W = W*)e(t — s).
s=1

e First term W'x(0) — 2,1 by standard MC results.
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The rate of convergence

x(t) = Wx(t—1)+ (I —We(t — 1)
= W'x(0) + > (W = W*)e(t — s).
s=1

e First term W'x(0) — 2,1 by standard MC results.

e Second term is not quite a telescoping sum...
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Limiting error term

t

E(t) =) (W —We(t - s).

s=1

e |E;(t)| is a convex function of past errors.
e Upper bound by maximizing over {e(t — s) € {—

H

Y

A A
272

t
AZ “Ws_l(i¢ ) - Ws(ia .)HTV
s=1

Game is now to find good bounds on one-step change...
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For reversible Markov chains,

W2(i, 1)

2s—2
~00) Ao (W)™77,

H(;iTWS - TrTH;V <

Applying it gives

|Ei(t)] < ev/nA
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A generic upper bound for reversible chains

For reversible Markov chains,

H(;iTWS - TrTH;V <

Applying it gives

|Ei(t)] < ev/nA

Says error decay rate is exponential only to the level of \/nA. 11
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Well-connected networks

If graph is “well-connected”, then:
HaWk - bW’“H < [la— by d(W)E.
TV
where

W) = sup W) =W, )y

Gives
[Ei(1)] = cA.

Rate is slower than Ay (V).
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A closer look at the error term

|We=1(i, ) — W*(i

”)HTV

e |f chain mixes slowly, each step is small.

e If chain mixes quickly, sum of steps is small.
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Approaches to refining the bound

e We know that HWS_I(i, ) — We (4, -)HTV is given by the best
coupling time.

e Construct a coupling that better matches the observed behavior.

e Possible connections to other interesting criteria?
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Extensions to gossip
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e Lots of work on gossip (asynchronous iterations)

e Kashyap et al. ('07), Carli et al. ('10), Zhu and Martinez ('10),
Lavaei and Murray ('10)...
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Extensions to gossip
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e Lots of work on gossip (asynchronous iterations)

e Kashyap et al. ('07), Carli et al. ('10), Zhu and Martinez ('10),
Lavaei and Murray ('10)...

e Should be able to prove similar results.
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Conclusions and cbservations

e Quantization is important for practical applications.
e Average consensus to within reasonable resolution can be fast.
e Overhead can be reduced by piggybacking on existing traffic.

Next step: implement e.g. in a sensornet testbed..
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Thanks!
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