Where are the Relay Capacity Gains in Cellular Systems?

Robert W. Heath Jr. Steven Peters, Kien Truong, and Ali Yazdan-Panah The University of Texas at Austin Wireless Networking and Communications Group http://www.ece.utexas.edu/~rheath

* Funded by a gift from Huawei

Introduction to Relays

Relays assist communication

- May be fixed (infrastructure), mobile (bus) or cooperative (other users)
- Single antenna, multiple antennas, multiple relays, multiple users

Main purpose of relays

Coverage (large-scale effects), diversity (small-scale) [?], and capacity [??]

Types of Relays

Ist time-slot 2nd time-slot

One-way full duplex

One-way half duplex

Two-way half duplex

One-way multi-hop

Relay Operation

- Relay scales RX signal
- Seems practical; less interest in standards

- Relay decodes RX signal
- Very practical

- Relay compresses RX sig
- Receiver decodes with partial information
- Less industry interest

Expected Gains of Relays

Linear system: full-duplex relay, no fading & same transmit powers [KraEtAlO5]

$$R_{\text{relay}} - R_{\text{direct}} = \log(1 + k P) - \log(1 + P) \rightarrow \log(k) \triangleq \Delta R_{\infty} \text{ as } P \rightarrow \infty$$

- lacktriangle As d o 0 , $\Delta R_{\infty} = 2$ bps/Hz (DF is the best)
- lacktriangle As $d \to 1$, $\Delta R_{\infty} = 1$ bps/Hz (CF is the best)
- lacksquare If d=0.5 , $\Delta R_{\infty}=\log(1+2^{lpha})pprox lpha$ bps/Hz $lpha\in[2,5)$ path-loss exponent

Capacity gains of relays are modest (there is diversity as well)

Cellular Systems Interference Limited

With interference, capacity gains seem to reduce further

Purpose of this Talk

(I) Discuss performance of different relaying strategies

(2) Suggest some solutions to make relays better

Compare with no relay & coordinated transmission (via DPC)

Simulation Framework

Channel

- IEEE 802.16j Type E channel model
- 46 dBm base station transmit power
- 37 dBm relay transmit power
- 24 dBm mobile transmit power

TConfiguration

- 3 cells, 6 sectors per cell, I antenna UE
- Compute throughput on ring
- Switch from direct to relay link as move from BTS [ring based]

Relay Performance

Half duplex relay, ignore direct link, DF, optimum time sharing

No gain from a single relay (ouch!!!)

Add Multiple Antennas

First phase: Receive MMSE RX receive filter

Second phase:TX beamforming (BF) at relays

- MRT (max. ratio trans.): maximizing desired signal power to its own user
- ZF (zero-forcing): minimizing sum of leakage powers to other users
- SLNR (signal-to-leakage-plus-noise ratio): balancing MRT & ZF (like MMSE)

One-Way Relay with Antennas

Better than direct trans./single-ant. relays from half of cell radius to cell-edge

Enhanced relay functionality reduces gap to full coordination

Shared Relaying

Multi-antenna relay placed at cell intersection [PetEtAl09]

- Relay shared among multiple base stations
- Inter-cell interference removed through MU-MIMO techniques
- Performs a decode and forward operation

Shared Relay Performance

Downlink

Uplink

Two-Way Shared Relay

- Phase I: Relay decodes BS signals under inter-sector interference
- Phase II: Relay decodes MS signals under other MS interference
- Phase III: UL/DL power control + spatial orthogonalization via block diag.
- A single superposition of UL + DL signals is transmitted by relay

Two-Way Shared Relay Uplink

- Performance is reduced due to inter-sector and inter cell MS interference
- Direct transmission is preferred unless MS closer to shared relay
- WNCG
- Optimal time-share with phase III is also assumed (not shown in equation)

Downlink Comparison

Area Spectral Efficiency (ASE)

Configurations	ASE (bps/Hz/km²)
Single-antenna relay + direct	6.99
BS coordination	20.20
One-way SLNR (3x) 2 ants + Direct	8.53
One-way SLNR (3x) 4 ants + Direct	12.68
One-way shared relay 3 ants + Direct	10.31
One-way shared relay 6 ants + Direct	11.44
Two-way shared relay 6 ants + Direct	6.99

One-way shared relay is good for cell-edge users

One-way relay with multiple antennas help more-inner users

Two-way shared relay does not help DL transmission

Uplink Comparison

Area Spectral Efficiency (ASE)

Configurations	ASE (bps/Hz/km²)
Single-antenna relay + direct	4.78
BS coordination	10.61
One-way SLNR (3x) 2 ants + Direct	6.43
One-way SLNR (3x) 4 ants + Direct	9.08
One-way shared relay 3 ants + Direct	4.96
One-way shared relay 6 ants + Direct	5.16
Two-way shared relay 6 ants + Direct	7.58

Two-way shared relay is good for cell-edge users

One-way relay with multiple antennas help more-inner users

One-way shared relay does not help UL transmission

Uplink / Downlink Sum Comparison

Area Spectral Efficiency (ASE)

Configurations	ASE (bps/Hz/km²)
Single-antenna relay + direct	5.89
BS coordination	15.41
One-way SLNR (3x) 2 ants + Direct	7.48
One-way SLNR (3x) 4 ants + Direct	10.88
One-way shared relay 3 ants + Direct	7.63
One-way shared relay 6 ants + Direct	8.30
Two-way shared relay 6 ants + Direct	7.28

Where are the Capacity Gains?

- Not here: Relays that neglect interference
 - They arguably suck even without interference
- Here: Relays that deal with interference
 - Multiple antennas improve mid-range cell performance
 - Multiple antenna shared relay improves edge of cell performance
 - Combination of relay strategies seems very attractive
- Future work: Two-way, relay selection, power control

References

[DoppEtAl08] K. Doppler, C. Wijting, and K. Valkealahti, "On the Benefits of Relays in a Metropolitan Area Network", VTC 2008.

[SreEtAl02] V. Sreng, H. Yanikomeroglu, and. D. Falconer, "Coverage enhancement through two-hop relaying in cellular radio systems," WNCC 2002.

[IrmDie08] R. Irmer and F. Diehm,"On coverage and capacity of relaying in LTE-advanced in example deployments," PIMRC 2008.

[LinEtAl09] Huang Lin, Daqing Gu, Wenbo Wang, Hongwen Yang, "Capacity analysis of dedicated fixed and mobile relay in LTE-Advanced cellular networks," ICCTA 2009.

[PetEtAl09] S.W. Peters, A.Y. Panah, K.T.Truong, and R.W. Heath, Jr., ``Relaying Architectures for 3GPP LTE-Advanced," EURASIP Journal on Advances in Signal Processing, special issue on 3GPP LTE and LTE Advanced, vol. 2009, Article ID 618787, 14 pages, doi:10.1155/2009/618787, 2009.

[KraEtAl05] G. Kramer, M. Gastpar, and P. Gupta, "Cooperative strategies and capacity theorems for relay networks", IEEE Trans. Info. Theory, no. 9, vol. 51, pp. 3037-3063, Sep. 2005

